ART

In geometry, a tetrakis hexahedron (also known as a tetrahexahedron, hextetrahedron, tetrakis cube, and kiscube[2]) is a Catalan solid. Its dual is the truncated octahedron, an Archimedean solid.

It also can be called a disdyakis hexahedron or hexakis tetrahedron as the dual of an omnitruncated tetrahedron.

Cartesian coordinates

Cartesian coordinates for the 14 vertices of a tetrakis hexahedron centered at the origin, are the points (±3/2, 0, 0), (0, ±3/2, 0), (0, 0, ±3/2) and (±1, ±1, ±1).

The length of the shorter edges of this tetrakis hexahedron equals 3/2 and that of the longer edges equals 2. The faces are acute isosceles triangles. The larger angle of these equals \( {\displaystyle \arccos(1/9)\approx 83.620\,629\,791\,56^{\circ }} \) and the two smaller ones equal arccos \( {\displaystyle \arccos(2/3)\approx 48.189\,685\,104\,22^{\circ }}. \)
Orthogonal projections

The tetrakis hexahedron, dual of the truncated octahedron has 3 symmetry positions, two located on vertices and one mid-edge.

Orthogonal projections
Projective
symmetry
[2] [4] [6]
Tetrakis
hexahedron
Dual cube t12 e66.png Dual cube t12 B2.png Dual cube t12.png
Truncated
octahedron
Cube t12 e66.png 3-cube t12 B2.svg 3-cube t12.svg

Uses

Naturally occurring (crystal) formations of tetrahexahedra are observed in copper and fluorite systems.

Polyhedral dice shaped like the tetrakis hexahedron are occasionally used by gamers.

A 24-cell viewed under a vertex-first perspective projection has a surface topology of a tetrakis hexahedron and the geometric proportions of the rhombic dodecahedron, with the rhombic faces divided into two triangles.

The tetrakis hexahedron appears as one of the simplest examples in building theory. Consider the Riemannian symmetric space associated to the group SL4(R). Its Tits boundary has the structure of a spherical building whose apartments are 2-dimensional spheres. The partition of this sphere into spherical simplices (chambers) can be obtained by taking the radial projection of a tetrakis hexahedron.
Symmetry

With Td, [3,3] (*332) tetrahedral symmetry, the triangular faces represent the 24 fundamental domains of tetrahedral symmetry. This polyhedron can be constructed from 6 great circles on a sphere. It can also be seen by a cube with its square faces triangulated by their vertices and face centers and a tetrahedron with its faces divided by vertices, mid-edges, and a central point.

Polyhedron great rhombi 4-4 max.png Disdyakis 6 max.png Disdyakis 6 in deltoidal 12.png Disdyakis 6 in rhombic 6 max.png Disdyakis 6 in Platonic 4a max.png Disdyakis 6 in Platonic 4b max.png
Truncated
tetratetrahedron
Disdyakis
hexahedron
Deltoidal
dodecahedron
Rhombic
hexahedron
Tetrahedron

Spherical polyhedron
Disdyakis 6 spherical.png Disdyakis 6 spherical from redyellow.png Disdyakis 6 spherical from red.png Disdyakis 6 spherical from blue.png
(see rotating model) Orthographic projections from 2-, 3- and 4-fold axes

The edges of the spherical tetrakis hexahedron belong to six great circles, which correspond to mirror planes in tetrahedral symmetry. They can be grouped into three pairs of orthogonal circles (which typically intersect on one coordinate axis each). In the images below these square hosohedra are colored red, green and blue.

Stereographic projections
Spherical tetrakis hexahedron RGB.png 2-fold 3-fold 4-fold
Tetrakis hexahedron stereographic d2.svg Tetrakis hexahedron stereographic d3.svg Tetrakis hexahedron stereographic d4.svg

Dimensions

If we denote the edge length of the base cube by a, the height of each pyramid summit above the cube is a/4. The inclination of each triangular face of the pyramid versus the cube face is arctan(1/2), approximately 26.565° (sequence A073000 in the OEIS). One edge of the isosceles triangles has length a, the other two have length 3a/4, which follows by applying the Pythagorean theorem to height and base length. This yields an altitude of √5a/4 in the triangle (OEIS: A204188). Its area is √5a/8, and the internal angles are arccos(2/3) (approximately 48.1897°) and the complementary 180° − 2 arccos(2/3) (approximately 83.6206°).

The volume of the pyramid is a3/12; so the total volume of the six pyramids and the cube in the hexahedron is 3a3/2.
Kleetope

It can be seen as a cube with square pyramids covering each square face; that is, it is the Kleetope of the cube.
Cubic pyramid

It is very similar to the 3D net for a 4D cubic pyramid, as the net for a square based is a square with triangles attached to each edge, the net for a cubic pyramid is a cube with square pyramids attached to each face.
Related polyhedra and tilings

Uniform octahedral polyhedra
Symmetry: [4,3], (*432) [4,3]+
(432)
[1+,4,3] = [3,3]
(*332)
[3+,4]
(3*2)
{4,3} t{4,3} r{4,3}
r{31,1}
t{3,4}
t{31,1}
{3,4}
{31,1}
rr{4,3}
s2{3,4}
tr{4,3} sr{4,3} h{4,3}
{3,3}
h2{4,3}
t{3,3}
s{3,4}
s{31,1}
CDel node 1.pngCDel 4.pngCDel node.pngCDel 3.pngCDel node.png CDel node 1.pngCDel 4.pngCDel node 1.pngCDel 3.pngCDel node.png CDel node.pngCDel 4.pngCDel node 1.pngCDel 3.pngCDel node.png CDel node.pngCDel 4.pngCDel node 1.pngCDel 3.pngCDel node 1.png CDel node.pngCDel 4.pngCDel node.pngCDel 3.pngCDel node 1.png CDel node 1.pngCDel 4.pngCDel node.pngCDel 3.pngCDel node 1.png CDel node 1.pngCDel 4.pngCDel node 1.pngCDel 3.pngCDel node 1.png CDel node h.pngCDel 4.pngCDel node h.pngCDel 3.pngCDel node h.png CDel node h.pngCDel 3.pngCDel node h.pngCDel 4.pngCDel node.png
CDel node h0.pngCDel 4.pngCDel node 1.pngCDel 3.pngCDel node.png
= CDel nodes 11.pngCDel split2.pngCDel node.png
CDel node h0.pngCDel 4.pngCDel node 1.pngCDel 3.pngCDel node 1.png
= CDel nodes 11.pngCDel split2.pngCDel node 1.png
CDel node h0.pngCDel 4.pngCDel node.pngCDel 3.pngCDel node 1.png
= CDel nodes.pngCDel split2.pngCDel node 1.png
CDel node 1.pngCDel 4.pngCDel node h.pngCDel 3.pngCDel node h.png CDel node h1.pngCDel 4.pngCDel node.pngCDel 3.pngCDel node.png =
CDel nodes 10ru.pngCDel split2.pngCDel node.png or CDel nodes 01rd.pngCDel split2.pngCDel node.png
CDel node h1.pngCDel 4.pngCDel node.pngCDel 3.pngCDel node 1.png =
CDel nodes 10ru.pngCDel split2.pngCDel node 1.png or CDel nodes 01rd.pngCDel split2.pngCDel node 1.png
CDel node h.pngCDel 3.pngCDel node h.pngCDel 4.pngCDel node h0.png =
CDel node h.pngCDel split1.pngCDel nodes hh.png
Uniform polyhedron-43-t0.svg Uniform polyhedron-43-t01.svg Uniform polyhedron-43-t1.svg
Uniform polyhedron-33-t02.png
Uniform polyhedron-43-t12.svg
Uniform polyhedron-33-t012.png
Uniform polyhedron-43-t2.svg
Uniform polyhedron-33-t1.png
Uniform polyhedron-43-t02.png
Rhombicuboctahedron uniform edge coloring.png
Uniform polyhedron-43-t012.png Uniform polyhedron-43-s012.png Uniform polyhedron-33-t0.pngUniform polyhedron-33-t2.png Uniform polyhedron-33-t01.pngUniform polyhedron-33-t12.png Uniform polyhedron-43-h01.svg
Uniform polyhedron-33-s012.svg
Duals to uniform polyhedra
V43 V3.82 V(3.4)2 V4.62 V34 V3.43 V4.6.8 V34.4 V33 V3.62 V35
CDel node f1.pngCDel 4.pngCDel node.pngCDel 3.pngCDel node.png CDel node f1.pngCDel 4.pngCDel node f1.pngCDel 3.pngCDel node.png CDel node.pngCDel 4.pngCDel node f1.pngCDel 3.pngCDel node.png CDel node.pngCDel 4.pngCDel node f1.pngCDel 3.pngCDel node f1.png CDel node.pngCDel 4.pngCDel node.pngCDel 3.pngCDel node f1.png CDel node f1.pngCDel 4.pngCDel node.pngCDel 3.pngCDel node f1.png CDel node f1.pngCDel 4.pngCDel node f1.pngCDel 3.pngCDel node f1.png CDel node fh.pngCDel 4.pngCDel node fh.pngCDel 3.pngCDel node fh.png CDel node fh.pngCDel 4.pngCDel node.pngCDel 3.pngCDel node.png CDel node fh.pngCDel 4.pngCDel node.pngCDel 3.pngCDel node f1.png CDel node fh.pngCDel 3.pngCDel node fh.pngCDel 4.pngCDel node.png
CDel node f1.pngCDel 3.pngCDel node.pngCDel 3.pngCDel node f1.png CDel node f1.pngCDel 3.pngCDel node f1.pngCDel 3.pngCDel node f1.png CDel node.pngCDel 3.pngCDel node f1.pngCDel 3.pngCDel node.png CDel node f1.pngCDel 4.pngCDel node fh.pngCDel 3.pngCDel node fh.png CDel node f1.pngCDel 3.pngCDel node.pngCDel 3.pngCDel node.png CDel node.pngCDel 3.pngCDel node f1.pngCDel 3.pngCDel node f1.png CDel node fh.pngCDel 3.pngCDel node fh.pngCDel 3.pngCDel node fh.png
Octahedron.svg Triakisoctahedron.jpg Rhombicdodecahedron.jpg Tetrakishexahedron.jpg Hexahedron.svg Deltoidalicositetrahedron.jpg Disdyakisdodecahedron.jpg Pentagonalicositetrahedronccw.jpg Tetrahedron.svg Triakistetrahedron.jpg Dodecahedron.svg
*n32 symmetry mutation of truncated tilings: n.6.6
Sym.
*n42
[n,3]
Spherical Euclid. Compact Parac. Noncompact hyperbolic
*232
[2,3]
*332
[3,3]
*432
[4,3]
*532
[5,3]
*632
[6,3]
*732
[7,3]
*832
[8,3]...
*∞32
[∞,3]
[12i,3] [9i,3] [6i,3]
Truncated
figures
Hexagonal dihedron.svg Uniform tiling 332-t12.png Uniform tiling 432-t12.png Uniform tiling 532-t12.png Uniform tiling 63-t12.svg Truncated order-7 triangular tiling.svg H2-8-3-trunc-primal.svg H2 tiling 23i-6.png H2 tiling 23j12-6.png H2 tiling 23j9-6.png H2 tiling 23j-6.png
Config. 2.6.6 3.6.6 4.6.6 5.6.6 6.6.6 7.6.6 8.6.6 ∞.6.6 12i.6.6 9i.6.6 6i.6.6
n-kis
figures
Hexagonal Hosohedron.svg Spherical triakis tetrahedron.png Spherical tetrakis hexahedron.png Spherical pentakis dodecahedron.png Uniform tiling 63-t2.svg Heptakis heptagonal tiling.svg H2-8-3-kis-dual.svg H2checkers 33i.png
Config. V2.6.6 V3.6.6 V4.6.6 V5.6.6 V6.6.6 V7.6.6 V8.6.6 V∞.6.6 V12i.6.6 V9i.6.6 V6i.6.6

It is a polyhedra in a sequence defined by the face configuration V4.6.2n. This group is special for having all even number of edges per vertex and form bisecting planes through the polyhedra and infinite lines in the plane, and continuing into the hyperbolic plane for any n ≥ 7.

With an even number of faces at every vertex, these polyhedra and tilings can be shown by alternating two colors so all adjacent faces have different colors.

Each face on these domains also corresponds to the fundamental domain of a symmetry group with order 2,3,n mirrors at each triangle face vertex.

*n32 symmetry mutations of omnitruncated tilings: 4.6.2n
Sym.
*n32
[n,3]
Spherical Euclid. Compact hyperb. Paraco. Noncompact hyperbolic
*232
[2,3]
*332
[3,3]
*432
[4,3]
*532
[5,3]
*632
[6,3]
*732
[7,3]
*832
[8,3]
*∞32
[∞,3]
 
[12i,3]
 
[9i,3]
 
[6i,3]
 
[3i,3]
Figures Spherical truncated trigonal prism.png Uniform tiling 332-t012.png Uniform tiling 432-t012.png Uniform tiling 532-t012.png Uniform polyhedron-63-t012.png Truncated triheptagonal tiling.svg H2-8-3-omnitruncated.svg H2 tiling 23i-7.png H2 tiling 23j12-7.png H2 tiling 23j9-7.png H2 tiling 23j6-7.png H2 tiling 23j3-7.png
Config. 4.6.4 4.6.6 4.6.8 4.6.10 4.6.12 4.6.14 4.6.16 4.6.∞ 4.6.24i 4.6.18i 4.6.12i 4.6.6i
Duals Spherical hexagonal bipyramid.png Spherical tetrakis hexahedron.png Spherical disdyakis dodecahedron.png Spherical disdyakis triacontahedron.png Tiling Dual Semiregular V4-6-12 Bisected Hexagonal.svg H2checkers 237.png H2checkers 238.png H2checkers 23i.png H2 checkers 23j12.png H2 checkers 23j9.png H2 checkers 23j6.png H2 checkers 23j3.png
Config. V4.6.4 V4.6.6 V4.6.8 V4.6.10 V4.6.12 V4.6.14 V4.6.16 V4.6.∞ V4.6.24i V4.6.18i V4.6.12i V4.6.6i

See also

Disdyakis triacontahedron
Disdyakis dodecahedron
Kisrhombille tiling
Compound of three octahedra
Deltoidal icositetrahedron, another 24-face Catalan solid.

References

Hexakistetraeder in German, see e.g. Meyers page and Brockhaus page. The same drawing appears in Brockhaus and Efron as преломленный пирамидальный тетраэдр (refracted pyramidal tetrahedron).

Conway, Symmetries of Things, p.284

Williams, Robert (1979). The Geometrical Foundation of Natural Structure: A Source Book of Design. Dover Publications, Inc. ISBN 0-486-23729-X. (Section 3-9)
Wenninger, Magnus (1983), Dual Models, Cambridge University Press, doi:10.1017/CBO9780511569371, ISBN 978-0-521-54325-5, MR 0730208 (The thirteen semiregular convex polyhedra and their duals, Page 14, Tetrakishexahedron)
The Symmetries of Things 2008, John H. Conway, Heidi Burgiel, Chaim Goodman-Strass, ISBN 978-1-56881-220-5 [1] (Chapter 21, Naming the Archimedean and Catalan polyhedra and tilings, page 284, Tetrakis hexahedron)

External links

Eric W. Weisstein, Tetrakis hexahedron (Catalan solid) at MathWorld.
Virtual Reality Polyhedra www.georgehart.com: The Encyclopedia of Polyhedra
VRML model
Conway Notation for Polyhedra Try: "dtO" or "kC"
Tetrakis Hexahedron – Interactive Polyhedron model
The Uniform Polyhedra

vte

Catalan solids
Polyhedron truncated 4a dual max.png
Triakis tetrahedron
(Needle)
Polyhedron truncated 4b dual max.png
Triakis tetrahedron
(Kis)
Polyhedron truncated 6 dual.png
Triakis octahedron
(Needle)
Polyhedron truncated 8 dual max.png
Tetrakis hexahedron
(Kis)
Polyhedron truncated 12 dual max.png
Triakis icosahedron
(Needle)
Polyhedron truncated 20 dual max.png
Pentakis dodecahedron
(Kis)
Polyhedron 4-4 dual max.png
Rhombic hexahedron
(Join)
Polyhedron 6-8 dual blue.png
Rhombic dodecahedron
(Join)
Polyhedron 12-20 dual max.png
Rhombic triacontahedron
(Join)
Polyhedron small rhombi 4-4 dual max.png
Deltoidal dodecahedron
(Ortho)
Polyhedron great rhombi 4-4 dual max.png
Disdyakis hexahedron
(Meta)
Polyhedron small rhombi 6-8 dual max.png
Deltoidal icositetrahedron
(Ortho)
Polyhedron great rhombi 6-8 dual max.png
Disdyakis dodecahedron
(Meta)
Polyhedron small rhombi 12-20 dual max.png
Deltoidal hexecontahedron
(Ortho)
Polyhedron great rhombi 12-20 dual max.png
Disdyakis triacontahedron
(Meta)
Polyhedron snub 4-4 right dual max.pngPolyhedron snub 4-4 left dual max.png
Pentagonal dodecahedron
(Gyro)
Polyhedron snub 6-8 right dual max.pngPolyhedron snub 6-8 left dual max.png
Pentagonal icositetrahedron
(Gyro)
Polyhedron snub 12-20 right dual max.pngPolyhedron snub 12-20 left dual max.png
Pentagonal hexecontahedron
(Gyro)
Archimedean duals
Polyhedron truncated 4a.png
Truncated tetrahedron
(Truncate)
Polyhedron truncated 4b.png
Truncated tetrahedron
(Zip)
Polyhedron truncated 6.png
Truncated cube
(Truncate)
Polyhedron truncated 8.png
Truncated octahedron
(Zip)
Polyhedron truncated 12.png
Truncated dodecahedron
(Truncate)
Polyhedron truncated 20.png
Truncated icosahedron
(Zip)
Polyhedron 4-4.png
Tetratetrahedron
(Ambo)
Polyhedron 6-8 max.png
Cuboctahedron
(Ambo)
Polyhedron 12-20 max.png
Icosidodecahedron
(Ambo)
Polyhedron small rhombi 4-4.png
Rhombitetratetrahedron
(Expand)
Polyhedron great rhombi 4-4.png
Truncated tetratetrahedron
(Bevel)
Polyhedron small rhombi 6-8.png
Rhombicuboctahedron
(Expand)
Polyhedron great rhombi 6-8.png
Truncated cuboctahedron
(Bevel)
Polyhedron small rhombi 12-20.png
Rhombicosidodecahedron
(Expand)
Polyhedron great rhombi 12-20.png
Truncated icosidodecahedron
(Bevel)
Polyhedron snub 4-4 left.pngPolyhedron snub 4-4 right.png
Snub tetrahedron
(Snub)
Polyhedron snub 6-8 left.pngPolyhedron snub 6-8 right.png
Snub cube
(Snub)
Polyhedron snub 12-20 left.pngPolyhedron snub 12-20 right.png
Snub dodecahedron
(Snub)

Convex polyhedra
Platonic solids (regular)

tetrahedron cube octahedron dodecahedron icosahedron

Archimedean solids
(semiregular or uniform)

truncated tetrahedron cuboctahedron truncated cube truncated octahedron rhombicuboctahedron truncated cuboctahedron snub cube icosidodecahedron truncated dodecahedron truncated icosahedron rhombicosidodecahedron truncated icosidodecahedron snub dodecahedron

Catalan solids
(duals of Archimedean)

triakis tetrahedron rhombic dodecahedron triakis octahedron tetrakis hexahedron deltoidal icositetrahedron disdyakis dodecahedron pentagonal icositetrahedron rhombic triacontahedron triakis icosahedron pentakis dodecahedron deltoidal hexecontahedron disdyakis triacontahedron pentagonal hexecontahedron

Dihedral regular

dihedron hosohedron

Dihedral uniform

prisms antiprisms

duals:

bipyramids trapezohedra

Dihedral others

pyramids truncated trapezohedra gyroelongated bipyramid cupola bicupola pyramidal frusta bifrustum rotunda birotunda prismatoid scutoid

Degenerate polyhedra are in italics.

Undergraduate Texts in Mathematics

Graduate Texts in Mathematics

Graduate Studies in Mathematics

Mathematics Encyclopedia

World

Index

Hellenica World - Scientific Library

Retrieved from "http://en.wikipedia.org/"
All text is available under the terms of the GNU Free Documentation License