ART

In 4-dimensional geometry, the tetrahedral cupola is a polychoron bounded by one tetrahedron, a parallel cuboctahedron, connected by 10 triangular prisms, and 4 triangular pyramids.[1]

Related polytopes

The tetrahedral cupola can be sliced off from a runcinated 5-cell, on a hyperplane parallel to a tetrahedral cell. The cuboctahedron base passes through the center of the runcinated 5-cell, so the Tetrahedral cupola contains half of the tetrahedron and triangular prism cells of the runcinated 5-cell. The cupola can be seen in A2 and A3 Coxeter plane orthogonal projection of the runcinated 5-cell:

A3 Coxeter plane
Runcinated 5-cell Tetrahedron
(Cupola top)
Cuboctahedron
(Cupola base)
4-simplex t03 A3.svg 3-simplex t0.svg 3-simplex t02.svg
A2 Coxeter plane
4-simplex t03 A2.svg 3-simplex t0 A2.svg 3-simplex t02 A2.svg

See also

Tetrahedral pyramid (5-cell)

References

Convex Segmentochora Dr. Richard Klitzing, Symmetry: Culture and Science, Vol. 11, Nos. 1-4, 139-181, 2000 (4.23 tetrahedron || cuboctahedron)

External links

Segmentochora: tetaco, tet || co, K-4.23

Undergraduate Texts in Mathematics

Graduate Texts in Mathematics

Graduate Studies in Mathematics

Mathematics Encyclopedia

World

Index

Hellenica World - Scientific Library

Retrieved from "http://en.wikipedia.org/"
All text is available under the terms of the GNU Free Documentation License