The tables contain the prime factorization of the natural numbers from 1 to 1000.
When n is a prime number, the prime factorization is just n itself, written in bold below.
The number 1 is called a unit. It has no prime factors and is neither prime nor composite.
See also: Table of divisors (prime and non-prime divisors for 1 to 1000)
Properties
Many properties of a natural number n can be seen or directly computed from the prime factorization of n.
- The multiplicity of a prime factor p of n is the largest exponent m for which pm divides n. The tables show the multiplicity for each prime factor. If no exponent is written then the multiplicity is 1 (since p = p1). The multiplicity of a prime which does not divide n may be called 0 or may be considered undefined.
- Ω(n), the big Omega function, is the number of prime factors of n counted with multiplicity (so it is the sum of all prime factor multiplicities).
- A prime number has Ω(n) = 1. The first: 2, 3, 5, 7, 11, 13, 17, 19, 23, 29, 31, 37 (sequence A000040 in the OEIS). There are many special types of prime numbers.
- A composite number has Ω(n) > 1. The first: 4, 6, 8, 9, 10, 12, 14, 15, 16, 18, 20, 21 (sequence A002808 in the OEIS). All numbers above 1 are either prime or composite. 1 is neither.
- A semiprime has Ω(n) = 2 (so it is composite). The first: 4, 6, 9, 10, 14, 15, 21, 22, 25, 26, 33, 34 (sequence A001358 in the OEIS).
- A k-almost prime (for a natural number k) has Ω(n) = k (so it is composite if k > 1).
- An even number has the prime factor 2. The first: 2, 4, 6, 8, 10, 12, 14, 16, 18, 20, 22, 24 (sequence A005843 in the OEIS).
- An odd number does not have the prime factor 2. The first: 1, 3, 5, 7, 9, 11, 13, 15, 17, 19, 21, 23 (sequence A005408 in the OEIS). All integers are either even or odd.
- A square has even multiplicity for all prime factors (it is of the form a2 for some a). The first: 1, 4, 9, 16, 25, 36, 49, 64, 81, 100, 121, 144 (sequence A000290 in the OEIS).
- A cube has all multiplicities divisible by 3 (it is of the form a3 for some a). The first: 1, 8, 27, 64, 125, 216, 343, 512, 729, 1000, 1331, 1728 (sequence A000578 in the OEIS).
- A perfect power has a common divisor m > 1 for all multiplicities (it is of the form am for some a > 1 and m > 1). The first: 4, 8, 9, 16, 25, 27, 32, 36, 49, 64, 81, 100 (sequence A001597 in the OEIS). 1 is sometimes included.
- A powerful number (also called squareful) has multiplicity above 1 for all prime factors. The first: 1, 4, 8, 9, 16, 25, 27, 32, 36, 49, 64, 72 (sequence A001694 in the OEIS).
- A prime power has only one prime factor. The first: 2, 3, 4, 5, 7, 8, 9, 11, 13, 16, 17, 19 (sequence A000961 in the OEIS). 1 is sometimes included.
- An Achilles number is powerful but not a perfect power. The first: 72, 108, 200, 288, 392, 432, 500, 648, 675, 800, 864, 968 (sequence A052486 in the OEIS).
- A square-free integer has no prime factor with multiplicity above 1. The first: 1, 2, 3, 5, 6, 7, 10, 11, 13, 14, 15, 17 (sequence A005117 in the OEIS)). A number where some but not all prime factors have multiplicity above 1 is neither square-free nor squareful.
- The Liouville function λ(n) is 1 if Ω(n) is even, and is -1 if Ω(n) is odd.
- The Möbius function μ(n) is 0 if n is not square-free. Otherwise μ(n) is 1 if Ω(n) is even, and is −1 if Ω(n) is odd.
- A sphenic number has Ω(n) = 3 and is square-free (so it is the product of 3 distinct primes). The first: 30, 42, 66, 70, 78, 102, 105, 110, 114, 130, 138, 154 (sequence A007304 in the OEIS).
- a0(n) is the sum of primes dividing n, counted with multiplicity. It is an additive function.
- A Ruth-Aaron pair is two consecutive numbers (x, x+1) with a0(x) = a0(x+1). The first (by x value): 5, 8, 15, 77, 125, 714, 948, 1330, 1520, 1862, 2491, 3248 (sequence A039752 in the OEIS), another definition is the same prime only count once, if so, the first (by x value): 5, 24, 49, 77, 104, 153, 369, 492, 714, 1682, 2107, 2299 (sequence A006145 in the OEIS)
- A primorial x# is the product of all primes from 2 to x. The first: 2, 6, 30, 210, 2310, 30030, 510510, 9699690, 223092870, 6469693230, 200560490130, 7420738134810 (sequence A002110 in the OEIS). 1# = 1 is sometimes included.
- A factorial x! is the product of all numbers from 1 to x. The first: 1, 2, 6, 24, 120, 720, 5040, 40320, 362880, 3628800, 39916800, 479001600 (sequence A000142 in the OEIS). 0! = 1 is sometimes included.
- A k-smooth number (for a natural number k) has largest prime factor ≤ k (so it is also j-smooth for any j > k).
- m is smoother than n if the largest prime factor of m is below the largest of n.
- A regular number has no prime factor above 5 (so it is 5-smooth). The first: 1, 2, 3, 4, 5, 6, 8, 9, 10, 12, 15, 16 (sequence A051037 in the OEIS).
- A k-powersmooth number has all pm ≤ k where p is a prime factor with multiplicity m.
- A frugal number has more digits than the number of digits in its prime factorization (when written like below tables with multiplicities above 1 as exponents). The first in decimal: 125, 128, 243, 256, 343, 512, 625, 729, 1024, 1029, 1215, 1250 (sequence A046759 in the OEIS).
- An equidigital number has the same number of digits as its prime factorization. The first in decimal: 1, 2, 3, 5, 7, 10, 11, 13, 14, 15, 16, 17 (sequence A046758 in the OEIS).
- An extravagant number has fewer digits than its prime factorization. The first in decimal: 4, 6, 8, 9, 12, 18, 20, 22, 24, 26, 28, 30 (sequence A046760 in the OEIS).
- An economical number has been defined as a frugal number, but also as a number that is either frugal or equidigital.
- gcd(m, n) (greatest common divisor of m and n) is the product of all prime factors which are both in m and n (with the smallest multiplicity for m and n).
- m and n are coprime (also called relatively prime) if gcd(m, n) = 1 (meaning they have no common prime factor).
- lcm(m, n) (least common multiple of m and n) is the product of all prime factors of m or n (with the largest multiplicity for m or n).
- gcd(m, n) × lcm(m, n) = m × n. Finding the prime factors is often harder than computing gcd and lcm using other algorithms which do not require known prime factorization.
- m is a divisor of n (also called m divides n, or n is divisible by m) if all prime factors of m have at least the same multiplicity in n.
The divisors of n are all products of some or all prime factors of n (including the empty product 1 of no prime factors). The number of divisors can be computed by increasing all multiplicities by 1 and then multiplying them. Divisors and properties related to divisors are shown in table of divisors.
The divisors of n are all products of some or all prime factors of n (including the empty product 1 of no prime factors). The number of divisors can be computed by increasing all multiplicities by 1 and then multiplying them. Divisors and properties related to divisors are shown in table of divisors.
1 to 100
1 − 20
1 |
|
2 |
2 |
3 |
3 |
4 |
22 |
5 |
5 |
6 |
2·3 |
7 |
7 |
8 |
23 |
9 |
32 |
10 |
2·5 |
11 |
11 |
12 |
22·3 |
13 |
13 |
14 |
2·7 |
15 |
3·5 |
16 |
24 |
17 |
17 |
18 |
2·32 |
19 |
19 |
20 |
22·5 |
|
21 − 40
21 |
3·7 |
22 |
2·11 |
23 |
23 |
24 |
23·3 |
25 |
52 |
26 |
2·13 |
27 |
33 |
28 |
22·7 |
29 |
29 |
30 |
2·3·5 |
31 |
31 |
32 |
25 |
33 |
3·11 |
34 |
2·17 |
35 |
5·7 |
36 |
22·32 |
37 |
37 |
38 |
2·19 |
39 |
3·13 |
40 |
23·5 |
|
41 − 60
41 |
41 |
42 |
2·3·7 |
43 |
43 |
44 |
22·11 |
45 |
32·5 |
46 |
2·23 |
47 |
47 |
48 |
24·3 |
49 |
72 |
50 |
2·52 |
51 |
3·17 |
52 |
22·13 |
53 |
53 |
54 |
2·33 |
55 |
5·11 |
56 |
23·7 |
57 |
3·19 |
58 |
2·29 |
59 |
59 |
60 |
22·3·5 |
|
61 − 80
61 |
61 |
62 |
2·31 |
63 |
32·7 |
64 |
26 |
65 |
5·13 |
66 |
2·3·11 |
67 |
67 |
68 |
22·17 |
69 |
3·23 |
70 |
2·5·7 |
71 |
71 |
72 |
23·32 |
73 |
73 |
74 |
2·37 |
75 |
3·52 |
76 |
22·19 |
77 |
7·11 |
78 |
2·3·13 |
79 |
79 |
80 |
24·5 |
|
81 − 100
81 |
34 |
82 |
2·41 |
83 |
83 |
84 |
22·3·7 |
85 |
5·17 |
86 |
2·43 |
87 |
3·29 |
88 |
23·11 |
89 |
89 |
90 |
2·32·5 |
91 |
7·13 |
92 |
22·23 |
93 |
3·31 |
94 |
2·47 |
95 |
5·19 |
96 |
25·3 |
97 |
97 |
98 |
2·72 |
99 |
32·11 |
100 |
22·52 |
|
101 to 200
101 − 120
101 |
101 |
102 |
2·3·17 |
103 |
103 |
104 |
23·13 |
105 |
3·5·7 |
106 |
2·53 |
107 |
107 |
108 |
22·33 |
109 |
109 |
110 |
2·5·11 |
111 |
3·37 |
112 |
24·7 |
113 |
113 |
114 |
2·3·19 |
115 |
5·23 |
116 |
22·29 |
117 |
32·13 |
118 |
2·59 |
119 |
7·17 |
120 |
23·3·5 |
|
121 − 140
121 |
112 |
122 |
2·61 |
123 |
3·41 |
124 |
22·31 |
125 |
53 |
126 |
2·32·7 |
127 |
127 |
128 |
27 |
129 |
3·43 |
130 |
2·5·13 |
131 |
131 |
132 |
22·3·11 |
133 |
7·19 |
134 |
2·67 |
135 |
33·5 |
136 |
23·17 |
137 |
137 |
138 |
2·3·23 |
139 |
139 |
140 |
22·5·7 |
|
141 − 160
141 |
3·47 |
142 |
2·71 |
143 |
11·13 |
144 |
24·32 |
145 |
5·29 |
146 |
2·73 |
147 |
3·72 |
148 |
22·37 |
149 |
149 |
150 |
2·3·52 |
151 |
151 |
152 |
23·19 |
153 |
32·17 |
154 |
2·7·11 |
155 |
5·31 |
156 |
22·3·13 |
157 |
157 |
158 |
2·79 |
159 |
3·53 |
160 |
25·5 |
|
161 − 180
161 |
7·23 |
162 |
2·34 |
163 |
163 |
164 |
22·41 |
165 |
3·5·11 |
166 |
2·83 |
167 |
167 |
168 |
23·3·7 |
169 |
132 |
170 |
2·5·17 |
171 |
32·19 |
172 |
22·43 |
173 |
173 |
174 |
2·3·29 |
175 |
52·7 |
176 |
24·11 |
177 |
3·59 |
178 |
2·89 |
179 |
179 |
180 |
22·32·5 |
|
181 − 200
181 |
181 |
182 |
2·7·13 |
183 |
3·61 |
184 |
23·23 |
185 |
5·37 |
186 |
2·3·31 |
187 |
11·17 |
188 |
22·47 |
189 |
33·7 |
190 |
2·5·19 |
191 |
191 |
192 |
26·3 |
193 |
193 |
194 |
2·97 |
195 |
3·5·13 |
196 |
22·72 |
197 |
197 |
198 |
2·32·11 |
199 |
199 |
200 |
23·52 |
|
201 to 300
201 − 220
201 |
3·67 |
202 |
2·101 |
203 |
7·29 |
204 |
22·3·17 |
205 |
5·41 |
206 |
2·103 |
207 |
32·23 |
208 |
24·13 |
209 |
11·19 |
210 |
2·3·5·7 |
211 |
211 |
212 |
22·53 |
213 |
3·71 |
214 |
2·107 |
215 |
5·43 |
216 |
23·33 |
217 |
7·31 |
218 |
2·109 |
219 |
3·73 |
220 |
22·5·11 |
|
221 − 240
221 |
13·17 |
222 |
2·3·37 |
223 |
223 |
224 |
25·7 |
225 |
32·52 |
226 |
2·113 |
227 |
227 |
228 |
22·3·19 |
229 |
229 |
230 |
2·5·23 |
231 |
3·7·11 |
232 |
23·29 |
233 |
233 |
234 |
2·32·13 |
235 |
5·47 |
236 |
22·59 |
237 |
3·79 |
238 |
2·7·17 |
239 |
239 |
240 |
24·3·5 |
|
241 − 260
241 |
241 |
242 |
2·112 |
243 |
35 |
244 |
22·61 |
245 |
5·72 |
246 |
2·3·41 |
247 |
13·19 |
248 |
23·31 |
249 |
3·83 |
250 |
2·53 |
251 |
251 |
252 |
22·32·7 |
253 |
11·23 |
254 |
2·127 |
255 |
3·5·17 |
256 |
28 |
257 |
257 |
258 |
2·3·43 |
259 |
7·37 |
260 |
22·5·13 |
|
261 − 280
261 |
32·29 |
262 |
2·131 |
263 |
263 |
264 |
23·3·11 |
265 |
5·53 |
266 |
2·7·19 |
267 |
3·89 |
268 |
22·67 |
269 |
269 |
270 |
2·33·5 |
271 |
271 |
272 |
24·17 |
273 |
3·7·13 |
274 |
2·137 |
275 |
52·11 |
276 |
22·3·23 |
277 |
277 |
278 |
2·139 |
279 |
32·31 |
280 |
23·5·7 |
|
281 − 300
281 |
281 |
282 |
2·3·47 |
283 |
283 |
284 |
22·71 |
285 |
3·5·19 |
286 |
2·11·13 |
287 |
7·41 |
288 |
25·32 |
289 |
172 |
290 |
2·5·29 |
291 |
3·97 |
292 |
22·73 |
293 |
293 |
294 |
2·3·72 |
295 |
5·59 |
296 |
23·37 |
297 |
33·11 |
298 |
2·149 |
299 |
13·23 |
300 |
22·3·52 |
|
301 to 400
301 − 320
301 |
7·43 |
302 |
2·151 |
303 |
3·101 |
304 |
24·19 |
305 |
5·61 |
306 |
2·32·17 |
307 |
307 |
308 |
22·7·11 |
309 |
3·103 |
310 |
2·5·31 |
311 |
311 |
312 |
23·3·13 |
313 |
313 |
314 |
2·157 |
315 |
32·5·7 |
316 |
22·79 |
317 |
317 |
318 |
2·3·53 |
319 |
11·29 |
320 |
26·5 |
|
321 − 340
321 |
3·107 |
322 |
2·7·23 |
323 |
17·19 |
324 |
22·34 |
325 |
52·13 |
326 |
2·163 |
327 |
3·109 |
328 |
23·41 |
329 |
7·47 |
330 |
2·3·5·11 |
331 |
331 |
332 |
22·83 |
333 |
32·37 |
334 |
2·167 |
335 |
5·67 |
336 |
24·3·7 |
337 |
337 |
338 |
2·132 |
339 |
3·113 |
340 |
22·5·17 |
|
341 − 360
341 |
11·31 |
342 |
2·32·19 |
343 |
73 |
344 |
23·43 |
345 |
3·5·23 |
346 |
2·173 |
347 |
347 |
348 |
22·3·29 |
349 |
349 |
350 |
2·52·7 |
351 |
33·13 |
352 |
25·11 |
353 |
353 |
354 |
2·3·59 |
355 |
5·71 |
356 |
22·89 |
357 |
3·7·17 |
358 |
2·179 |
359 |
359 |
360 |
23·32·5 |
|
361 − 380
361 |
192 |
362 |
2·181 |
363 |
3·112 |
364 |
22·7·13 |
365 |
5·73 |
366 |
2·3·61 |
367 |
367 |
368 |
24·23 |
369 |
32·41 |
370 |
2·5·37 |
371 |
7·53 |
372 |
22·3·31 |
373 |
373 |
374 |
2·11·17 |
375 |
3·53 |
376 |
23·47 |
377 |
13·29 |
378 |
2·33·7 |
379 |
379 |
380 |
22·5·19 |
|
381 − 400
381 |
3·127 |
382 |
2·191 |
383 |
383 |
384 |
27·3 |
385 |
5·7·11 |
386 |
2·193 |
387 |
32·43 |
388 |
22·97 |
389 |
389 |
390 |
2·3·5·13 |
391 |
17·23 |
392 |
23·72 |
393 |
3·131 |
394 |
2·197 |
395 |
5·79 |
396 |
22·32·11 |
397 |
397 |
398 |
2·199 |
399 |
3·7·19 |
400 |
24·52 |
|
401 to 500
401 − 420
401 |
401 |
402 |
2·3·67 |
403 |
13·31 |
404 |
22·101 |
405 |
34·5 |
406 |
2·7·29 |
407 |
11·37 |
408 |
23·3·17 |
409 |
409 |
410 |
2·5·41 |
411 |
3·137 |
412 |
22·103 |
413 |
7·59 |
414 |
2·32·23 |
415 |
5·83 |
416 |
25·13 |
417 |
3·139 |
418 |
2·11·19 |
419 |
419 |
420 |
22·3·5·7 |
|
421 − 440
421 |
421 |
422 |
2·211 |
423 |
32·47 |
424 |
23·53 |
425 |
52·17 |
426 |
2·3·71 |
427 |
7·61 |
428 |
22·107 |
429 |
3·11·13 |
430 |
2·5·43 |
431 |
431 |
432 |
24·33 |
433 |
433 |
434 |
2·7·31 |
435 |
3·5·29 |
436 |
22·109 |
437 |
19·23 |
438 |
2·3·73 |
439 |
439 |
440 |
23·5·11 |
|
441 − 460
441 |
32·72 |
442 |
2·13·17 |
443 |
443 |
444 |
22·3·37 |
445 |
5·89 |
446 |
2·223 |
447 |
3·149 |
448 |
26·7 |
449 |
449 |
450 |
2·32·52 |
451 |
11·41 |
452 |
22·113 |
453 |
3·151 |
454 |
2·227 |
455 |
5·7·13 |
456 |
23·3·19 |
457 |
457 |
458 |
2·229 |
459 |
33·17 |
460 |
22·5·23 |
|
461 − 480
461 |
461 |
462 |
2·3·7·11 |
463 |
463 |
464 |
24·29 |
465 |
3·5·31 |
466 |
2·233 |
467 |
467 |
468 |
22·32·13 |
469 |
7·67 |
470 |
2·5·47 |
471 |
3·157 |
472 |
23·59 |
473 |
11·43 |
474 |
2·3·79 |
475 |
52·19 |
476 |
22·7·17 |
477 |
32·53 |
478 |
2·239 |
479 |
479 |
480 |
25·3·5 |
|
481 − 500
481 |
13·37 |
482 |
2·241 |
483 |
3·7·23 |
484 |
22·112 |
485 |
5·97 |
486 |
2·35 |
487 |
487 |
488 |
23·61 |
489 |
3·163 |
490 |
2·5·72 |
491 |
491 |
492 |
22·3·41 |
493 |
17·29 |
494 |
2·13·19 |
495 |
32·5·11 |
496 |
24·31 |
497 |
7·71 |
498 |
2·3·83 |
499 |
499 |
500 |
22·53 |
|
501 to 600
501 − 520
501 |
3·167 |
502 |
2·251 |
503 |
503 |
504 |
23·32·7 |
505 |
5·101 |
506 |
2·11·23 |
507 |
3·132 |
508 |
22·127 |
509 |
509 |
510 |
2·3·5·17 |
511 |
7·73 |
512 |
29 |
513 |
33·19 |
514 |
2·257 |
515 |
5·103 |
516 |
22·3·43 |
517 |
11·47 |
518 |
2·7·37 |
519 |
3·173 |
520 |
23·5·13 |
|
521 − 540
521 |
521 |
522 |
2·32·29 |
523 |
523 |
524 |
22·131 |
525 |
3·52·7 |
526 |
2·263 |
527 |
17·31 |
528 |
24·3·11 |
529 |
232 |
530 |
2·5·53 |
531 |
32·59 |
532 |
22·7·19 |
533 |
13·41 |
534 |
2·3·89 |
535 |
5·107 |
536 |
23·67 |
537 |
3·179 |
538 |
2·269 |
539 |
72·11 |
540 |
22·33·5 |
|
541 − 560
541 |
541 |
542 |
2·271 |
543 |
3·181 |
544 |
25·17 |
545 |
5·109 |
546 |
2·3·7·13 |
547 |
547 |
548 |
22·137 |
549 |
32·61 |
550 |
2·52·11 |
551 |
19·29 |
552 |
23·3·23 |
553 |
7·79 |
554 |
2·277 |
555 |
3·5·37 |
556 |
22·139 |
557 |
557 |
558 |
2·32·31 |
559 |
13·43 |
560 |
24·5·7 |
|
561 − 580
561 |
3·11·17 |
562 |
2·281 |
563 |
563 |
564 |
22·3·47 |
565 |
5·113 |
566 |
2·283 |
567 |
34·7 |
568 |
23·71 |
569 |
569 |
570 |
2·3·5·19 |
571 |
571 |
572 |
22·11·13 |
573 |
3·191 |
574 |
2·7·41 |
575 |
52·23 |
576 |
26·32 |
577 |
577 |
578 |
2·172 |
579 |
3·193 |
580 |
22·5·29 |
|
581 − 600
581 |
7·83 |
582 |
2·3·97 |
583 |
11·53 |
584 |
23·73 |
585 |
32·5·13 |
586 |
2·293 |
587 |
587 |
588 |
22·3·72 |
589 |
19·31 |
590 |
2·5·59 |
591 |
3·197 |
592 |
24·37 |
593 |
593 |
594 |
2·33·11 |
595 |
5·7·17 |
596 |
22·149 |
597 |
3·199 |
598 |
2·13·23 |
599 |
599 |
600 |
23·3·52 |
|
601 to 700
601 − 620
601 |
601 |
602 |
2·7·43 |
603 |
32·67 |
604 |
22·151 |
605 |
5·112 |
606 |
2·3·101 |
607 |
607 |
608 |
25·19 |
609 |
3·7·29 |
610 |
2·5·61 |
611 |
13·47 |
612 |
22·32·17 |
613 |
613 |
614 |
2·307 |
615 |
3·5·41 |
616 |
23·7·11 |
617 |
617 |
618 |
2·3·103 |
619 |
619 |
620 |
22·5·31 |
|
621 − 640
621 |
33·23 |
622 |
2·311 |
623 |
7·89 |
624 |
24·3·13 |
625 |
54 |
626 |
2·313 |
627 |
3·11·19 |
628 |
22·157 |
629 |
17·37 |
630 |
2·32·5·7 |
631 |
631 |
632 |
23·79 |
633 |
3·211 |
634 |
2·317 |
635 |
5·127 |
636 |
22·3·53 |
637 |
72·13 |
638 |
2·11·29 |
639 |
32·71 |
640 |
27·5 |
|
641 − 660
641 |
641 |
642 |
2·3·107 |
643 |
643 |
644 |
22·7·23 |
645 |
3·5·43 |
646 |
2·17·19 |
647 |
647 |
648 |
23·34 |
649 |
11·59 |
650 |
2·52·13 |
651 |
3·7·31 |
652 |
22·163 |
653 |
653 |
654 |
2·3·109 |
655 |
5·131 |
656 |
24·41 |
657 |
32·73 |
658 |
2·7·47 |
659 |
659 |
660 |
22·3·5·11 |
|
661 − 680
661 |
661 |
662 |
2·331 |
663 |
3·13·17 |
664 |
23·83 |
665 |
5·7·19 |
666 |
2·32·37 |
667 |
23·29 |
668 |
22·167 |
669 |
3·223 |
670 |
2·5·67 |
671 |
11·61 |
672 |
25·3·7 |
673 |
673 |
674 |
2·337 |
675 |
33·52 |
676 |
22·132 |
677 |
677 |
678 |
2·3·113 |
679 |
7·97 |
680 |
23·5·17 |
|
681 − 700
681 |
3·227 |
682 |
2·11·31 |
683 |
683 |
684 |
22·32·19 |
685 |
5·137 |
686 |
2·73 |
687 |
3·229 |
688 |
24·43 |
689 |
13·53 |
690 |
2·3·5·23 |
691 |
691 |
692 |
22·173 |
693 |
32·7·11 |
694 |
2·347 |
695 |
5·139 |
696 |
23·3·29 |
697 |
17·41 |
698 |
2·349 |
699 |
3·233 |
700 |
22·52·7 |
|
701 to 800
701 − 720
701 |
701 |
702 |
2·33·13 |
703 |
19·37 |
704 |
26·11 |
705 |
3·5·47 |
706 |
2·353 |
707 |
7·101 |
708 |
22·3·59 |
709 |
709 |
710 |
2·5·71 |
711 |
32·79 |
712 |
23·89 |
713 |
23·31 |
714 |
2·3·7·17 |
715 |
5·11·13 |
716 |
22·179 |
717 |
3·239 |
718 |
2·359 |
719 |
719 |
720 |
24·32·5 |
|
721 − 740
721 |
7·103 |
722 |
2·192 |
723 |
3·241 |
724 |
22·181 |
725 |
52·29 |
726 |
2·3·112 |
727 |
727 |
728 |
23·7·13 |
729 |
36 |
730 |
2·5·73 |
731 |
17·43 |
732 |
22·3·61 |
733 |
733 |
734 |
2·367 |
735 |
3·5·72 |
736 |
25·23 |
737 |
11·67 |
738 |
2·32·41 |
739 |
739 |
740 |
22·5·37 |
|
741 − 760
741 |
3·13·19 |
742 |
2·7·53 |
743 |
743 |
744 |
23·3·31 |
745 |
5·149 |
746 |
2·373 |
747 |
32·83 |
748 |
22·11·17 |
749 |
7·107 |
750 |
2·3·53 |
751 |
751 |
752 |
24·47 |
753 |
3·251 |
754 |
2·13·29 |
755 |
5·151 |
756 |
22·33·7 |
757 |
757 |
758 |
2·379 |
759 |
3·11·23 |
760 |
23·5·19 |
|
761 − 780
761 |
761 |
762 |
2·3·127 |
763 |
7·109 |
764 |
22·191 |
765 |
32·5·17 |
766 |
2·383 |
767 |
13·59 |
768 |
28·3 |
769 |
769 |
770 |
2·5·7·11 |
771 |
3·257 |
772 |
22·193 |
773 |
773 |
774 |
2·32·43 |
775 |
52·31 |
776 |
23·97 |
777 |
3·7·37 |
778 |
2·389 |
779 |
19·41 |
780 |
22·3·5·13 |
|
781 − 800
781 |
11·71 |
782 |
2·17·23 |
783 |
33·29 |
784 |
24·72 |
785 |
5·157 |
786 |
2·3·131 |
787 |
787 |
788 |
22·197 |
789 |
3·263 |
790 |
2·5·79 |
791 |
7·113 |
792 |
23·32·11 |
793 |
13·61 |
794 |
2·397 |
795 |
3·5·53 |
796 |
22·199 |
797 |
797 |
798 |
2·3·7·19 |
799 |
17·47 |
800 |
25·52 |
|
801 to 900
801 |
32·89 |
802 |
2·401 |
803 |
11·73 |
804 |
22·3·67 |
805 |
5·7·23 |
806 |
2·13·31 |
807 |
3·269 |
808 |
23·101 |
809 |
809 |
810 |
2·34·5 |
811 |
811 |
812 |
22·7·29 |
813 |
3·271 |
814 |
2·11·37 |
815 |
5·163 |
816 |
24·3·17 |
817 |
19·43 |
818 |
2·409 |
819 |
32·7·13 |
820 |
22·5·41 |
|
821 - 840
821 |
821 |
822 |
2·3·137 |
823 |
823 |
824 |
23·103 |
825 |
3·52·11 |
826 |
2·7·59 |
827 |
827 |
828 |
22·32·23 |
829 |
829 |
830 |
2·5·83 |
831 |
3·277 |
832 |
26·13 |
833 |
72·17 |
834 |
2·3·139 |
835 |
5·167 |
836 |
22·11·19 |
837 |
33·31 |
838 |
2·419 |
839 |
839 |
840 |
23·3·5·7 |
|
841 - 860
841 |
292 |
842 |
2·421 |
843 |
3·281 |
844 |
22·211 |
845 |
5·132 |
846 |
2·32·47 |
847 |
7·112 |
848 |
24·53 |
849 |
3·283 |
850 |
2·52·17 |
851 |
23·37 |
852 |
22·3·71 |
853 |
853 |
854 |
2·7·61 |
855 |
32·5·19 |
856 |
23·107 |
857 |
857 |
858 |
2·3·11·13 |
859 |
859 |
860 |
22·5·43 |
|
861 - 880
861 |
3·7·41 |
862 |
2·431 |
863 |
863 |
864 |
25·33 |
865 |
5·173 |
866 |
2·433 |
867 |
3·172 |
868 |
22·7·31 |
869 |
11·79 |
870 |
2·3·5·29 |
871 |
13·67 |
872 |
23·109 |
873 |
32·97 |
874 |
2·19·23 |
875 |
53·7 |
876 |
22·3·73 |
877 |
877 |
878 |
2·439 |
879 |
3·293 |
880 |
24·5·11 |
|
881 - 900
881 |
881 |
882 |
2·32·72 |
883 |
883 |
884 |
22·13·17 |
885 |
3·5·59 |
886 |
2·443 |
887 |
887 |
888 |
23·3·37 |
889 |
7·127 |
890 |
2·5·89 |
891 |
34·11 |
892 |
22·223 |
893 |
19·47 |
894 |
2·3·149 |
895 |
5·179 |
896 |
27·7 |
897 |
3·13·23 |
898 |
2·449 |
899 |
29·31 |
900 |
22·32·52 |
|
901 to 1000
901 - 920
901 |
17·53 |
902 |
2·11·41 |
903 |
3·7·43 |
904 |
23·113 |
905 |
5·181 |
906 |
2·3·151 |
907 |
907 |
908 |
22·227 |
909 |
32·101 |
910 |
2·5·7·13 |
911 |
911 |
912 |
24·3·19 |
913 |
11·83 |
914 |
2·457 |
915 |
3·5·61 |
916 |
22·229 |
917 |
7·131 |
918 |
2·33·17 |
919 |
919 |
920 |
23·5·23 |
|
921 - 940
921 |
3·307 |
922 |
2·461 |
923 |
13·71 |
924 |
22·3·7·11 |
925 |
52·37 |
926 |
2·463 |
927 |
32·103 |
928 |
25·29 |
929 |
929 |
930 |
2·3·5·31 |
931 |
72·19 |
932 |
22·233 |
933 |
3·311 |
934 |
2·467 |
935 |
5·11·17 |
936 |
23·32·13 |
937 |
937 |
938 |
2·7·67 |
939 |
3·313 |
940 |
22·5·47 |
|
941 - 960
941 |
941 |
942 |
2·3·157 |
943 |
23·41 |
944 |
24·59 |
945 |
33·5·7 |
946 |
2·11·43 |
947 |
947 |
948 |
22·3·79 |
949 |
13·73 |
950 |
2·52·19 |
951 |
3·317 |
952 |
23·7·17 |
953 |
953 |
954 |
2·32·53 |
955 |
5·191 |
956 |
22·239 |
957 |
3·11·29 |
958 |
2·479 |
959 |
7·137 |
960 |
26·3·5 |
|
961 - 980
961 |
312 |
962 |
2·13·37 |
963 |
32·107 |
964 |
22·241 |
965 |
5·193 |
966 |
2·3·7·23 |
967 |
967 |
968 |
23·112 |
969 |
3·17·19 |
970 |
2·5·97 |
971 |
971 |
972 |
22·35 |
973 |
7·139 |
974 |
2·487 |
975 |
3·52·13 |
976 |
24·61 |
977 |
977 |
978 |
2·3·163 |
979 |
11·89 |
980 |
22·5·72 |
|
981 - 1000
981 |
32·109 |
982 |
2·491 |
983 |
983 |
984 |
23·3·41 |
985 |
5·197 |
986 |
2·17·29 |
987 |
3·7·47 |
988 |
22·13·19 |
989 |
23·43 |
990 |
2·32·5·11 |
991 |
991 |
992 |
25·31 |
993 |
3·331 |
994 |
2·7·71 |
995 |
5·199 |
996 |
22·3·83 |
997 |
997 |
998 |
2·499 |
999 |
33·37 |
1000 |
23·53 |
|
See also
Table of divisors
Undergraduate Texts in Mathematics
Graduate Texts in Mathematics
Graduate Studies in Mathematics
Mathematics Encyclopedia
World
Index
Hellenica World - Scientific Library
Retrieved from "http://en.wikipedia.org/"
All text is available under the terms of the GNU Free Documentation License