In algebraic geometry, Sumihiro's theorem, introduced by (Sumihiro 1974), states that a normal algebraic variety with an action of a torus can be covered by torus-invariant affine open subsets.
The "normality" in the hypothesis cannot be relaxed.[1] The hypothesis that the group acting on the variety is a torus can also not be relaxed.[2]
Notes
Toric Varieties
Bialynicki-Birula decomposition of a non-singular quasi-projective scheme.
References
Sumihiro, Hideyasu (1974), "Equivariant completion", J. Math. Kyoto Univ., 14: 1–28, doi:10.1215/kjm/1250523277.
External links
Alper, Jarod; Hall, Jack; Rydh, David (2015). "A Luna étale slice theorem for algebraic stacks". arXiv:1504.06467 [math.AG].
Undergraduate Texts in Mathematics
Graduate Studies in Mathematics
Hellenica World - Scientific Library
Retrieved from "http://en.wikipedia.org/"
All text is available under the terms of the GNU Free Documentation License