ART

In mathematics, specifically in category theory and algebraic topology, the Baez–Dolan stabilization hypothesis, proposed in (Baez & Dolan 1995), states that suspension of a weak n-category has no more essential effect after n + 2 times.[1] Precisely, it states that the suspension functor \({\displaystyle {\mathsf {nCat}}_{k}\to {\mathsf {nCat}}_{k+1}} \) is an equivalence for \( {\displaystyle k\geq n+2} \).[2]
References

Lurie, Jacob (2009-10-30). "Derived Algebraic Geometry VI: E_k Algebras". Example 1.2.3. arXiv:0911.0018 [math.AT].

Baez & Dolan, § 5

Sources

Baez, John C.; Dolan, James (1995), "Higher-dimensional algebra and topological quantum field theory", Journal of Mathematical Physics, 36 (11): 6073–6105, arXiv:q-alg/9503002, Bibcode:1995JMP....36.6073B, doi:10.1063/1.531236, MR 1355899

External links

https://ncatlab.org/nlab/show/stabilization+hypothesis

Mathematics Encyclopedia

World

Index

Hellenica World - Scientific Library

Retrieved from "http://en.wikipedia.org/"
All text is available under the terms of the GNU Free Documentation License