ART

In mathematics, the Ruelle zeta function is a zeta function associated with a dynamical system. It is named after mathematical physicist David Ruelle.

Formal definition

Let f be a function defined on a manifold M, such that the set of fixed points Fix(f n) is finite for all n > 1. Further let φ be a function on M with values in d × d complex matrices. The zeta function of the first kind is[1]

\( {\displaystyle \zeta (z)=\exp \left(\sum _{m\geq 1}{\frac {z^{m}}{m}}\sum _{x\in \operatorname {Fix} (f^{m})}\operatorname {Tr} \left(\prod _{k=0}^{m-1}\phi (f^{k}(x))\right)\right)} \)

Examples

In the special case d = 1, φ = 1, we have[1]

\( {\displaystyle \zeta (z)=\exp \left(\sum _{m\geq 1}{\frac {z^{m}}{m}}\left|\operatorname {Fix} (f^{m})\right|\right)} \)

which is the Artin–Mazur zeta function.

The Ihara zeta function is an example of a Ruelle zeta function.[2]
See also

List of zeta functions

References

Terras (2010) p. 28

Terras (2010) p. 29

Lapidus, Michel L.; van Frankenhuijsen, Machiel (2006). Fractal geometry, complex dimensions and zeta functions. Geometry and spectra of fractal strings. Springer Monographs in Mathematics. New York, NY: Springer-Verlag. ISBN 0-387-33285-5. Zbl 1119.28005.
Kotani, Motoko; Sunada, Toshikazu (2000). "Zeta functions of finite graphs". J. Math. Sci. Univ. Tokyo. 7: 7–25.
Terras, Audrey (2010). Zeta Functions of Graphs: A Stroll through the Garden. Cambridge Studies in Advanced Mathematics. 128. Cambridge University Press. ISBN 0-521-11367-9. Zbl 1206.05003.

 

Mathematics Encyclopedia

World

Index

Hellenica World - Scientific Library

Retrieved from "http://en.wikipedia.org/"
All text is available under the terms of the GNU Free Documentation License