In mathematics, the reciprocal difference of a finite sequence of numbers \( {\displaystyle (x_{0},x_{1},...,x_{n})} \) on a function f(x) is defined inductively by the following formulas:
\( {\displaystyle \rho _{1}(x_{0},x_{1})={\frac {x_{0}-x_{1}}{f(x_{0})-f(x_{1})}}} \)
\({\displaystyle \rho _{2}(x_{0},x_{1},x_{2})={\frac {x_{0}-x_{2}}{\rho _{1}(x_{0},x_{1})-\rho _{1}(x_{1},x_{2})}}+f(x_{1})} \)
\( {\displaystyle \rho _{n}(x_{0},x_{1},\ldots ,x_{n})={\frac {x_{0}-x_{n}}{\rho _{n-1}(x_{0},x_{1},\ldots ,x_{n-1})-\rho _{n-1}(x_{1},x_{2},\ldots ,x_{n})}}+\rho _{n-2}(x_{1},\ldots ,x_{n-1})} \)
See also
Divided differences
References
Weisstein, Eric W. "Reciprocal Difference". MathWorld.
Abramowitz, Milton; Irene A. Stegun (1972) [1964]. Handbook of Mathematical Functions (ninth Dover printing, tenth GPO printing ed.). Dover. p. 878. ISBN 0-486-61272-4.
Undergraduate Texts in Mathematics
Graduate Studies in Mathematics
Hellenica World - Scientific Library
Retrieved from "http://en.wikipedia.org/"
All text is available under the terms of the GNU Free Documentation License