ART

In graph theory, a Ptolemaic graph is an undirected graph whose shortest path distances obey Ptolemy's inequality, which in turn was named after the Greek astronomer and mathematician Ptolemy. The Ptolemaic graphs are exactly the graphs that are both chordal and distance-hereditary; they include the block graphs[1] and are a subclass of the perfect graphs.

Identity graph2

A Ptolemaic graph

Characterization

A graph is Ptolemaic if and only if it obeys any of the following equivalent conditions:

Computational complexity

Based on the characterization by oriented trees, Ptolemaic graphs can be recognized in linear time.[6]
Enumeration

The generating function for Ptolemaic graphs can be described symbolically, allowing the rapid calculation of the numbers of these graphs. Based on this method, the number of Ptolemaic graphs with n labeled vertices, for \( n=1,2,3,\dots \) , has been found to be[8]

1, 1, 4, 35, 481, 9042, 216077, 6271057, 214248958, 8424002973, 374708368981, 18604033129948, 1019915376831963, ... (sequence A287886 in the OEIS)

References

Kay, David C.; Chartrand, Gary (1965), "A characterization of certain ptolemaic graphs", Canadian Journal of Mathematics, 17: 342–346, doi:10.4153/CJM-1965-034-0, hdl:10338.dmlcz/126208, MR 0175113.
Howorka, Edward (1981), "A characterization of Ptolemaic graphs", Journal of Graph Theory, 5 (3): 323–331, doi:10.1002/jgt.3190050314, MR 0625074.
"Graphclass: ptolemaic", Information System on Graph Classes and their Inclusions, retrieved 2016-06-05.
McKee, Terry A. (2010), "Clique graph representations of Ptolemaic graphs", Discussiones Mathematicae Graph Theory, 30 (4): 651–661, doi:10.7151/dmgt.1520, MR 2761626.
Bandelt, Hans-Jürgen; Mulder, Henry Martyn (1986), "Distance-hereditary graphs", Journal of Combinatorial Theory, Series B, 41 (2): 182–208, doi:10.1016/0095-8956(86)90043-2, MR 0859310.
Uehara, Ryuhei; Uno, Yushi (2009), "Laminar structure of Ptolemaic graphs with applications", Discrete Applied Mathematics, 157 (7): 1533–1543, doi:10.1016/j.dam.2008.09.006, MR 2510233.
Farber, Martin; Jamison, Robert E. (1986), "Convexity in graphs and hypergraphs", SIAM Journal on Algebraic and Discrete Methods, 7 (3): 433–444, doi:10.1137/0607049, hdl:10338.dmlcz/127659, MR 0844046.
Bahrani, Maryam; Lumbroso, Jérémie (2018), "Enumerations, forbidden subgraph characterizations, and the split-decomposition", The Electronic Journal of Combinatorics, 25 (4)

Undergraduate Texts in Mathematics

Graduate Texts in Mathematics

Graduate Studies in Mathematics

Mathematics Encyclopedia

World

Index

Hellenica World - Scientific Library

Retrieved from "http://en.wikipedia.org/"
All text is available under the terms of the GNU Free Documentation License