ART

In algebraic geometry, the projection formula states the following:[1][2]

For a morphism \( f:X\to Y \) of ringed spaces, an \( {\mathcal {O}}_{X} \)-module \( {\mathcal {F}} \) and a locally free \( {\mathcal {O}}_{Y } \)-module \( {\mathcal {E}} \)of finite rank, the natural maps of sheaves

\( R^{i}f_{*}{\mathcal {F}}\otimes {\mathcal {E}}\to R^{i}f_{*}({\mathcal {F}}\otimes f^{*}{\mathcal {E}}) \)

are isomorphisms.

There is yet another projection formula in the setting of étale cohomology.
See also

Integration along fibers#Projection formula

References

Hartshorne 1977, Ch III, Exercise 8.3

http://math.stanford.edu/~vakil/0708-216/216class38.pdf

Hartshorne, Robin (1977), Algebraic Geometry, Graduate Texts in Mathematics, 52, New York: Springer-Verlag, ISBN 978-0-387-90244-9, MR 0463157

 

Undergraduate Texts in Mathematics

Graduate Texts in Mathematics

Graduate Studies in Mathematics

Mathematics Encyclopedia

World

Index

Hellenica World - Scientific Library

Retrieved from "http://en.wikipedia.org/"
All text is available under the terms of the GNU Free Documentation License