In set theory, a projection is one of two closely related types of functions or operations, namely:
A set-theoretic operation typified by the jth projection map, written\( {\displaystyle \mathrm {proj} _{j}} \), that takes an element \( \vec{x} = (x_1,\ \ldots,\ x_j,\ \ldots,\ x_k) \) of the Cartesian product \( (X_1 \times \cdots \times X_j \times \cdots \times X_k) \) to the value \( \mathrm{proj}_{j}(\vec{x}) = x_j \).[1]
A function that sends an element x to its equivalence class under a specified equivalence relation E,[2] or, equivalently, a surjection from a set to another set.[3] The function from elements to equivalence classes is a surjection, and every surjection corresponds to an equivalence relation under which two elements are equivalent when they have the same image. The result of the mapping is written as [x] when E is understood, or written as [x]E when it is necessary to make E explicit.
See also
Cartesian product
Projection (relational algebra)
Projection (mathematics)
Relation
References
Halmos, P. R. (1960), Naive Set Theory, Undergraduate Texts in Mathematics, Springer, p. 32, ISBN 9780387900926.
Brown, Arlen; Pearcy, Carl M. (1995), An Introduction to Analysis, Graduate Texts in Mathematics, 154, Springer, p. 8, ISBN 9780387943695.
Jech, Thomas (2003), Set Theory: The Third Millennium Edition, Springer Monographs in Mathematics, Springer, p. 34, ISBN 9783540440857.
Undergraduate Texts in Mathematics
Graduate Studies in Mathematics
Hellenica World - Scientific Library
Retrieved from "http://en.wikipedia.org/"
All text is available under the terms of the GNU Free Documentation License