In convex analysis, Popoviciu's inequality is an inequality about convex functions. It is similar to Jensen's inequality and was found in 1965 by Tiberiu Popoviciu,[1][2] a Romanian mathematician.
Formulation
Let f be a function from an interval \( I\subseteq {\mathbb {R}} \) to \( \mathbb {R} \). If f is convex, then for any three points x, y, z in I,
\( {\frac {f(x)+f(y)+f(z)}{3}}+f\left({\frac {x+y+z}{3}}\right)\geq {\frac {2}{3}}\left[f\left({\frac {x+y}{2}}\right)+f\left({\frac {y+z}{2}}\right)+f\left({\frac {z+x}{2}}\right)\right]. \)
If a function f is continuous, then it is convex if and only if the above inequality holds for all x, y, z from I. When f is strictly convex, the inequality is strict except for x = y = z.[3]
Generalizations
It can be generalized to any finite number n of points instead of 3, taken on the right-hand side k at a time instead of 2 at a time:[4]
Let f be a continuous function from an interval \( I\subseteq {\mathbb {R}} \) to \( \mathbb {R} \) . Then f is convex if and only if, for any integers n and k where n ≥ 3 and \( 2\leq k\leq n-1 \), and any n points \( x_{1},\dots ,x_{n} \) from I,
\( {\frac {1}{k}}{\binom {n-2}{k-2}}\left({\frac {n-k}{k-1}}\sum _{{i=1}}^{{n}}f(x_{i})+nf\left({\frac 1n}\sum _{{i=1}}^{{n}}x_{i}\right)\right)\geq \sum _{{1\leq i_{1}<\dots <i_{k}\leq n}}f\left({\frac 1k}\sum _{{j=1}}^{{k}}x_{{i_{j}}}\right) \)
Popoviciu's inequality can also be generalized to a weighted inequality.[5][6][7]
Notes
Tiberiu Popoviciu (1965), "Sur certaines inégalités qui caractérisent les fonctions convexes", Analele ştiinţifice Univ. "Al.I. Cuza" Iasi, Secţia I a Mat., 11: 155–164
Popoviciu's paper has been published in Romanian language, but the interested reader can find his results in the review Zbl 0166.06303. Page 1 Page 2
Constantin Niculescu; Lars-Erik Persson (2006), Convex functions and their applications: a contemporary approach, Springer Science & Business, p. 12, ISBN 978-0-387-24300-9
J. E. Pečarić; Frank Proschan; Yung Liang Tong (1992), Convex functions, partial orderings, and statistical applications, Academic Press, p. 171, ISBN 978-0-12-549250-8
P. M. Vasić; Lj. R. Stanković (1976), "Some inequalities for convex functions", Math. Balkanica (6 (1976)), pp. 281–288
Grinberg, Darij (2008). "Generalizations of Popoviciu's inequality". arXiv:0803.2958v1 [math.FA].
M.Mihai; F.-C. Mitroi-Symeonidis (2016), "New extensions of Popoviciu's inequality", Mediterr. J. Math., Volume 13, 13 (5), pp. 3121–3133, arXiv:1507.05304, doi:10.1007/s00009-015-0675-3, ISSN 1660-5446
Undergraduate Texts in Mathematics
Graduate Studies in Mathematics
Hellenica World - Scientific Library
Retrieved from "http://en.wikipedia.org/"
All text is available under the terms of the GNU Free Documentation License