In mathematics, more specifically in algebraic geometry, Parshin's conjecture (also referred to as the Beilinson–Parshin conjecture) states that for any smooth projective variety X defined over a finite field, the higher algebraic K-groups vanish up to torsion:
\( {\displaystyle K_{i}(X)\otimes \mathbf {Q} =0,\ \,i>0.}
See Conjecture 51 in.[1] It is named after Aleksei Nikolaevich Parshin and Alexander Beilinson.
Finite fields
The conjecture holds if d i m \( {\displaystyle dim\ X=0} \) by Quillen's computation of the K-groups of finite fields [2], showing in particular that they are finite groups.
Curves
The conjecture holds if \( {\displaystyle dim\ X=1} \) by the proof of Corollary 3.2.3 of Harder.[3] Additionally, by Quillen's finite generation result[4] (proving the Bass conjecture for the K-groups in this case) it follows that the K-groups are finite if \( {\displaystyle dim\ X=1} \).
References
Kahn, Bruno (2005). "Algebraic K-Theory, Algebraic Cycles and Arithmetic Geometry". In Friedlander, Eric; Grayson, Daniel (eds.). Handbook of K-Theory I. Springer. pp. 351–428.
Quillen, Daniel (1972). "On the cohomology and K-theory of the general linear groups over a finite field". Ann. of Math. 96: 552–586.
Harder, Günter (1977). "Die Kohomologie S-arithmetischer Gruppen über Funktionenkörpern". Invent. Math. 42: 135–175. doi:10.1007/bf01389786.
Grayson, Dan (1982). "Finite generation of K-groups of a curve over a finite field (after Daniel Quillen)". Algebraic K-theory, Part I (Oberwolfach, 1980) (PDF). Lecture Notes in Math. 966. Berlin, New York: Springer.
Undergraduate Texts in Mathematics
Graduate Studies in Mathematics
Hellenica World - Scientific Library
Retrieved from "http://en.wikipedia.org/"
All text is available under the terms of the GNU Free Documentation License