In the geometry of hyperbolic 3-space, the order-7 cubic honeycomb is a regular space-filling tessellation (or honeycomb). With Schläfli symbol {4,3,7}, it has seven cubes {4,3} around each edge. All vertices are ultra-ideal (existing beyond the ideal boundary) with infinitely many cubes existing around each vertex in an order-7 triangular tiling vertex arrangement.
Images
Cell-centered |
|
One cell at center |
One cell with ideal surface |
Related polytopes and honeycombs
It is one of a series of regular polytopes and honeycombs with cubic cells: {4,3,p}:
{4,3,p} polytopes | |||||||
---|---|---|---|---|---|---|---|
Space | S3 | H3 | |||||
Form | Finite | Compact | Paracompact | Noncompact | |||
Name | {4,3,3} | {4,3,4} | {4,3,5} | {4,3,6} | {4,3,7} | {4,3,8} | ... {4,3,∞} |
Image | |||||||
Vertex figure |
{3,3} |
{3,4} |
{3,5} |
{3,6} |
{3,7} |
{3,8} |
{3,∞} |
It is a part of a sequence of hyperbolic honeycombs with order-7 triangular tiling vertex figures, {p,3,7}.
{3,3,7} | {4,3,7} | {5,3,7} | {6,3,7} | {7,3,7} | {8,3,7} | {∞,3,7} |
---|---|---|---|---|---|---|
Order-8 cubic honeycomb | |
---|---|
Type | Regular honeycomb |
Schläfli symbols | {4,3,8} {4,(3,8,3)} |
Coxeter diagrams | = |
Cells | {4,3} |
Faces | {4} |
Edge figure | {8} |
Vertex figure | {3,8}, {(3,4,3)} |
Dual | {8,3,4} |
Coxeter group | [4,3,8] [4,((3,4,3))] |
Properties | Regular |
In the geometry of hyperbolic 3-space, the order-8 cubic honeycomb a regular space-filling tessellation (or honeycomb). With Schläfli symbol {4,3,8}. It has eight cubes {4,3} around each edge. All vertices are ultra-ideal (existing beyond the ideal boundary) with infinitely many cubes existing around each vertex in an order-8 triangular tiling vertex arrangement.
Poincaré disk model Cell-centered |
Poincaré disk model |
It has a second construction as a uniform honeycomb, Schläfli symbol {4,(3,4,3)}, Coxeter diagram, CDel node 1.pngCDel 4.pngCDel node.pngCDel split1.pngCDel branch.pngCDel label4.png, with alternating types or colors of cubic cells.
Infinite-order cubic honeycomb
Infinite-order cubic honeycomb | |
---|---|
Type | Regular honeycomb |
Schläfli symbols | {4,3,∞} {4,(3,∞,3)} |
Coxeter diagrams | = |
Cells | {4,3} |
Faces | {4} |
Edge figure | {∞} |
Vertex figure | {3,∞}, {(3,∞,3)} |
Dual | {∞,3,4} |
Coxeter group | [4,3,∞] [4,((3,∞,3))] |
Properties | Regular |
In the geometry of hyperbolic 3-space, the infinite-order cubic honeycomb a regular space-filling tessellation (or honeycomb). With Schläfli symbol {4,3,∞}. It has infinitely many cubes {4,3} around each edge. All vertices are ultra-ideal (existing beyond the ideal boundary) with infinitely many cubes existing around each vertex in an infinite-order triangular tiling vertex arrangement.
Poincaré disk model Cell-centered |
Poincaré disk model |
It has a second construction as a uniform honeycomb, Schläfli symbol {4,(3,∞,3)}, Coxeter diagram, CDel node 1.pngCDel 4.pngCDel node.pngCDel split1.pngCDel branch.pngCDel labelinfin.png, with alternating types or colors of cubic cells.
See also
Convex uniform honeycombs in hyperbolic space
List of regular polytopes
Infinite-order hexagonal tiling honeycomb
References
Coxeter, Regular Polytopes, 3rd. ed., Dover Publications, 1973. ISBN 0-486-61480-8. (Tables I and II: Regular polytopes and honeycombs, pp. 294–296)
The Beauty of Geometry: Twelve Essays (1999), Dover Publications, LCCN 99-35678, ISBN 0-486-40919-8 (Chapter 10, Regular Honeycombs in Hyperbolic Space) Table III
Jeffrey R. Weeks The Shape of Space, 2nd edition ISBN 0-8247-0709-5 (Chapters 16–17: Geometries on Three-manifolds I,II)
George Maxwell, Sphere Packings and Hyperbolic Reflection Groups, JOURNAL OF ALGEBRA 79,78-97 (1982) [1]
Hao Chen, Jean-Philippe Labbé, Lorentzian Coxeter groups and Boyd-Maxwell ball packings, (2013)[2]
Visualizing Hyperbolic Honeycombs arXiv:1511.02851 Roice Nelson, Henry Segerman (2015)
External links
John Baez, Visual insights: {7,3,3} Honeycomb (2014/08/01) {7,3,3} Honeycomb Meets Plane at Infinity (2014/08/14)
Danny Calegari, Kleinian, a tool for visualizing Kleinian groups, Geometry and the Imagination 4 March 2014. [3]
Undergraduate Texts in Mathematics
Graduate Studies in Mathematics
Hellenica World - Scientific Library
Retrieved from "http://en.wikipedia.org/"
All text is available under the terms of the GNU Free Documentation License