In the mathematical field of linear algebra and convex analysis, the numerical range or field of values of a complex \( n\times n \) matrix A is the set
\( W(A)=\left\{{\frac {{\mathbf {x}}^{*}A{\mathbf {x}}}{{\mathbf {x}}^{*}{\mathbf {x}}}}\mid {\mathbf {x}}\in {\mathbb {C}}^{n},\ x\not =0\right\} \)
where \( \mathbf{x}^* \) denotes the conjugate transpose of the vector \( \mathbf{x}^*. \)
In engineering, numerical ranges are used as a rough estimate of eigenvalues of A. Recently, generalizations of the numerical range are used to study quantum computing.
A related concept is the numerical radius, which is the largest absolute value of the numbers in the numerical range, i.e.
\( r(A)=\sup\{|\lambda |:\lambda \in W(A)\}=\sup _{{\|x\|=1}}|\langle Ax,x\rangle |. \)
Properties
The numerical range is the range of the Rayleigh quotient.
(Hausdorff–Toeplitz theorem) The numerical range is convex and compact.
\( W(\alpha A+\beta I)=\alpha W(A)+\{\beta \} \) for all square matrix A and complex numbers \( \alpha \) and \( \beta \) . Here I is the identity matrix.
W(A) is a subset of the closed right half-plane if and only if \( A+A^{*} \) is positive semidefinite.
The numerical range \( W(\cdot ) \) is the only function on the set of square matrices that satisfies (2), (3) and (4).
(Sub-additive) \( W(A+B)\subseteq W(A)+W(B) \), where the sum on the right-hand side denotes a sumset.
W(A) contains all the eigenvalues of A {\displaystyle A} A.
The numerical range of a \( 2\times 2 \) matrix is a filled ellipse.
W ( A ) {\displaystyle W(A)} W(A) is a real line segment \( {\displaystyle [\alpha ,\beta ]} \) if and only if A is a Hermitian matrix with its smallest and the largest eigenvalues being \( \alpha \) and \( \beta \) .
If A is a normal matrix then W(A) is the convex hull of its eigenvalues.
If α is a sharp point on the boundary of W(A), then \( \alpha \) is a normal eigenvalue of A.
\( r(\cdot ) \) is a norm on the space of \( n\times n \) matrices.
\( {\displaystyle r(A)\leq \|A\|\leq 2r(A)} \), where \( {\displaystyle \|\cdot \|} \) denotes the operator norm.
\( r(A^{n})\leq r(A)^{n} \)
Generalisations
C-numerical range
Higher-rank numerical range
Joint numerical range
Product numerical range
Polynomial numerical hull
See also
Spectral theory
Rayleigh quotient
Workshop on Numerical Ranges and Numerical Radii
Bibliography
Choi, M.D.; Kribs, D.W.; Życzkowski (2006), "Quantum error correcting codes from the compression formalism", Rep. Math. Phys., 58: 77, arXiv:quant-ph/0511101, Bibcode:2006RpMP...58...77C, doi:10.1016/S0034-4877(06)80041-8.
Dirr, G.; Helmkel, U.; Kleinsteuber, M.; Schulte-Herbrüggen, Th. (2006), "A new type of C-numerical range arising in quantum computing", Proc. Appl. Math. Mech., 6: 711–712.
Bonsall, F.F.; Duncan, J. (1971), Numerical Ranges of Operators on Normed Spaces and of Elements of Normed Algebras, Cambridge University Press, ISBN 978-0-521-07988-4.
Bonsall, F.F.; Duncan, J. (1971), Numerical Ranges II, Cambridge University Press, ISBN 978-0-521-20227-5.
Horn, Roger A.; Johnson, Charles R. (1991), Topics in Matrix Analysis, Cambridge University Press, ISBN 978-0-521-46713-1.
Li, C.K. (1996), "A simple proof of the elliptical range theorem", Proc. Am. Math. Soc., 124: 1985.
Keeler, Dennis S.; Rodman, Leiba; Spitkovsky, Ilya M. (1997), "The numerical range of 3 × 3 matrices", Linear Algebra and Its Applications, 252: 115.
Roger A. Horn and Charles R. Johnson, Topics in Matrix Analysis, Chapter 1, Cambridge University Press, 1991. ISBN 0-521-30587-X (hardback), ISBN 0-521-46713-6 (paperback).
"Functional Characterizations of the Field of Values and the Convex Hull of the Spectrum", Charles R. Johnson, Proceedings of the American Mathematical Society, 61(2):201-204, Dec 1976.
vte
Functional analysis (topics – glossary)
Spaces
Hilbert space Banach space Fréchet space topological vector space
Theorems
Hahn–Banach theorem closed graph theorem uniform boundedness principle Kakutani fixed-point theorem Krein–Milman theorem min-max theorem Gelfand–Naimark theorem Banach–Alaoglu theorem
Operators
bounded operator compact operator adjoint operator unitary operator Hilbert–Schmidt operator trace class unbounded operator
Algebras
Banach algebra C*-algebra spectrum of a C*-algebra operator algebra group algebra of a locally compact group von Neumann algebra
Open problems
invariant subspace problem Mahler's conjecture
Applications
Besov space Hardy space spectral theory of ordinary differential equations heat kernel index theorem calculus of variation functional calculus integral operator Jones polynomial topological quantum field theory noncommutative geometry Riemann hypothesis
Advanced topics
locally convex space approximation property balanced set Schwartz space weak topology barrelled space Banach–Mazur distance Tomita–Takesaki theory
Undergraduate Texts in Mathematics
Graduate Studies in Mathematics
Hellenica World - Scientific Library
Retrieved from "http://en.wikipedia.org/"
All text is available under the terms of the GNU Free Documentation License