ART

In mathematics, the nu function is

\( {\displaystyle {\begin{aligned}\nu (x)&\equiv \int _{0}^{\infty }{\frac {x^{t}\,dt}{\Gamma (t+1)}}\\[10pt]\nu (x,\alpha )&\equiv \int _{0}^{\infty }{\frac {x^{\alpha +t}\,dt}{\Gamma (\alpha +t+1)}}\end{aligned}}} \)

where \( \Gamma (z) \) is the Gamma function.[1][2]

This generalize the Laplace transform of the reciprocal gamma function.
See also

Lambda function (disambiguation)
Mu function

References

Erdélyi, A, Magnus, Tricomi, F. G, W, Oberhettinger (1981). Higher Transcendental Functions, Vol. 3: The Function y(x) and Related Functions. pp. 217–224.
Gradshteyn, Izrail Solomonovich; Ryzhik, Iosif Moiseevich; Geronimus, Yuri Veniaminovich; Tseytlin, Michail Yulyevich; Jeffrey, Alan (2015) [October 2014]. Zwillinger, Daniel; Moll, Victor Hugo (eds.). Table of Integrals, Series, and Products. Translated by Scripta Technica, Inc. (8 ed.). Academic Press, Inc. ISBN 978-0-12-384933-5. LCCN 2014010276.

Undergraduate Texts in Mathematics

Graduate Texts in Mathematics

Graduate Studies in Mathematics

Mathematics Encyclopedia

World

Index

Hellenica World - Scientific Library

Retrieved from "http://en.wikipedia.org/"
All text is available under the terms of the GNU Free Documentation License