ART

In mathematics, the Neville theta functions, named after Eric Harold Neville,[1] are defined as follows:[2][3] [4]

\( {\displaystyle \theta _{c}(z,m)={\frac {{\sqrt {2\pi }}\,q(m)^{1/4}}{m^{1/4}{\sqrt {K(m)}}}}\,\,\sum _{k=0}^{\infty }(q(m))^{k(k+1)}\cos \left({\frac {(2k+1)\pi z}{2K(m)}}\right)} \)

\( {\displaystyle \theta _{d}(z,m)={\frac {\sqrt {2\pi }}{2{\sqrt {K(m)}}}}\,\,\left(1+2\,\sum _{k=1}^{\infty }(q(m))^{k^{2}}\cos \left({\frac {\pi zk}{K(m)}}\right)\right)} \)

\( {\displaystyle \theta _{n}(z,m)={\frac {\sqrt {2\pi }}{2(1-m)^{1/4}{\sqrt {K(m)}}}}\,\,\left(1+2\sum _{k=1}^{\infty }(-1)^{k}(q(m))^{k^{2}}\cos \left({\frac {\pi zk}{K(m)}}\right)\right)} \)

\( {\displaystyle \theta _{s}(z,m)={\frac {{\sqrt {2\pi }}\,q(m)^{1/4}}{m^{1/4}(1-m)^{1/4}{\sqrt {K(m)}}}}\,\,\sum _{k=0}^{\infty }(-1)^{k}(q(m))^{k(k+1)}\sin \left({\frac {(2k+1)\pi z}{2K(m)}}\right)} \)

where: K(m) is the complete elliptic integral of the first kind, K'(m)=K(1-m), and \( {\displaystyle q(m)=e^{-\pi K'(m)/K(m)}} \) is the elliptic nome.

Note that the functions θp(z,m) are sometimes defined in terms of the nome q(m) and written θp(z,q) (e.g. NIST[5]). The functions may also be written in terms of the τ parameter θp(z|τ) where \( q=e^{{i\pi \tau }} \).

Relationship to other functions

The Neville theta functions may be expressed in terms of the Jacobi theta functions[5]

\( {\displaystyle \theta _{s}(z|\tau )=\theta _{23}(0|\tau )\theta _{1}(z'|\tau )/\theta '_{1}(0|\tau )} \)
\( {\displaystyle \theta _{c}(z|\tau )=\theta _{2}(z'|\tau )/\theta _{2}(0|\tau )} \)
\( {\displaystyle \theta _{n}(z|\tau )=\theta _{4}(z'|\tau )/\theta _{4}(0|\tau )} \)
\( {\displaystyle \theta _{d}(z|\tau )=\theta _{3}(z'|\tau )/\theta _{3}(0|\tau )} \)

where \( {\displaystyle z'=z/\theta _{3}(0|\tau )^{2}}. \)

The Neville theta functions are related to the Jacobi elliptic functions. If pq(u,m) is a Jacobi elliptic function (p and q are one of s,c,n,d), then

\( {\displaystyle \operatorname {pq} (u,m)={\frac {\theta _{p}(u,m)}{\theta _{q}(u,m)}}} \)

Examples

Substitute z = 2.5, m = 0.3 into the above definitions of Neville theta functions (using Maple) once obtain the following (consistent with results from wolfram math).

\( \theta _{c}(2.5,0.3)=-0.65900466676738154967 \) [6]
\( \theta _{d}(2.5,0.3)=0.95182196661267561994 \)
\( \theta _{n}(2.5,0.3)=1.0526693354651613637 \)
\( \theta _{s}(2.5,0.3)=0.82086879524530400536 \)

Symmetry

\( \theta _{c}(z,m)=\theta _{c}(-z,m) \)
\( \theta _{d}(z,m)=\theta _{d}(-z,m) \)
\( \theta _{n}(z,m)=\theta _{n}(-z,m) \)
\( \theta _{s}(z,m)=-\theta _{s}(-z,m) \)

Complex 3D plots

NevilleThetaC Maple complex plot 01NevilleThetaD Maple complex plot

NevilleThetaN Maple complex plotNevilleThetaS Maple complex plot

Implementation

NetvilleThetaC[z,m], NevilleThetaD[z,m], NevilleThetaN[z,m], and NevilleThetaS[z,m] are built-in functions of Mathematica[7] No such functions in Maple.
Notes

Abramowitz and Stegun, pp. 578-579
Neville (1944)
wolfram Mathematic
wolfram math
Olver, F. W. J.; et al., eds. (2017-12-22). "NIST Digital Library of Mathematical Functions (Release 1.0.17)". National Institute of Standards and Technology. Retrieved 2018-02-26.
[1]

[2]

References
Abramowitz, Milton; St

egun, Irene Ann, eds. (1983) [June 1964]. Handbook of Mathematical Functions with Formulas, Graphs, and Mathematical Tables. Applied Mathematics Series. 55 (Ninth reprint with additional corrections of tenth original printing with corrections (December 1972); first ed.). Washington D.C.; New York: United States Department of Commerce, National Bureau of Standards; Dover Publications. ISBN 978-0-486-61272-0. LCCN 64-60036. MR 0167642. LCCN 65-12253.
Neville, E. H. (Eric Harold) (1944). Jacobian Elliptic Functions. Oxford Clarendon Press.
Weisstein, Eric W. "Neville Theta Functions". MathWorld.

Undergraduate Texts in Mathematics

Graduate Texts in Mathematics

Graduate Studies in Mathematics

Mathematics Encyclopedia

World

Index

Hellenica World - Scientific Library

Retrieved from "http://en.wikipedia.org/"
All text is available under the terms of the GNU Free Documentation License