ART

In applied mathematics, the reflecting function \( {\displaystyle \,F(t,x)} \) of a differential system \( {\displaystyle {\dot {x}}=X(t,x)} \) connects the past state \( {\displaystyle \,x(-t)} \) of the system with the future state \( {\displaystyle \,x(t)} \) of the system by the formula \( {\displaystyle \,x(-t)=F(t,x(t)).} \) The concept of the reflecting function was introduced by Uladzimir Ivanavich Mironenka.

Definition

For the differential system \( {\displaystyle {\dot {x}}=X(t,x)} \) with the general solution \( {\displaystyle \varphi (t;t_{0},x)} \) in Cauchy form, the Reflecting Function of the system is defined by the formula \( {\displaystyle F(t,x)=\varphi (-t;t,x).} \)
Application

If a vector-function \( {\displaystyle X(t,x)} \) is \( {\displaystyle \,2\omega } \)-periodic with respect to \( \,t, \) then \( {\displaystyle \,F(-\omega ,x)} \) is the in-period \( {\displaystyle \,[-\omega ;\omega ]} \) transformation (Poincaré map) of the differential system \( {\displaystyle {\dot {x}}=X(t,x).} \) Therefore the knowledge of the Reflecting Function give us the opportunity to find out the initial dates \( {\displaystyle \,(\omega ,x_{0})} \) of periodic solutions of the differential system \( {\displaystyle {\dot {x}}=X(t,x)} \) and investigate the stability of those solutions.

For the Reflecting Function \( {\displaystyle \,F(t,x)} \) of the system \( {\displaystyle {\dot {x}}=X(t,x)} \) the basic relation

\( {\displaystyle \,F_{t}+F_{x}X+X(-t,F)=0,\qquad F(0,x)=x.} \)

is holding.

Therefore we have an opportunity sometimes to find Poincaré map of the non-integrable in quadrature systems even in elementary functions.
Literature

Мироненко В. И. Отражающая функция и периодические решения дифференциальных уравнений. — Минск, Университетское, 1986. — 76 с.
Мироненко В. И. Отражающая функция и исследование многомерных дифференциальных систем. — Гомель: Мин. образов. РБ, ГГУ им. Ф. Скорины, 2004. — 196 с.

External links

The Reflecting Function Site
How to construct equivalent differential systems

Undergraduate Texts in Mathematics

Graduate Texts in Mathematics

Graduate Studies in Mathematics

Mathematics Encyclopedia

World

Index

Hellenica World - Scientific Library

Retrieved from "http://en.wikipedia.org/"
All text is available under the terms of the GNU Free Documentation License