ART

A prime number (or prime) is a natural number greater than 1 that has no positive divisors other than 1 and itself. By Euclid's theorem, there are an infinite number of prime numbers. Subsets of the prime numbers may be generated with various formulas for primes. The first 1000 primes are listed below, followed by lists of notable types of prime numbers in alphabetical order, giving their respective first terms. 1 is neither prime nor composite.

The first 1000 prime numbers

The following table lists the first 1000 primes, with 20 columns of consecutive primes in each of the 50 rows.[1]

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20
1–20 2 3 5 7 11 13 17 19 23 29 31 37 41 43 47 53 59 61 67 71
21–40 73 79 83 89 97 101 103 107 109 113 127 131 137 139 149 151 157 163 167 173
41–60 179 181 191 193 197 199 211 223 227 229 233 239 241 251 257 263 269 271 277 281
61–80 283 293 307 311 313 317 331 337 347 349 353 359 367 373 379 383 389 397 401 409
81–100 419 421 431 433 439 443 449 457 461 463 467 479 487 491 499 503 509 521 523 541
101–120 547 557 563 569 571 577 587 593 599 601 607 613 617 619 631 641 643 647 653 659
121–140 661 673 677 683 691 701 709 719 727 733 739 743 751 757 761 769 773 787 797 809
141–160 811 821 823 827 829 839 853 857 859 863 877 881 883 887 907 911 919 929 937 941
161–180 947 953 967 971 977 983 991 997 1009 1013 1019 1021 1031 1033 1039 1049 1051 1061 1063 1069
181–200 1087 1091 1093 1097 1103 1109 1117 1123 1129 1151 1153 1163 1171 1181 1187 1193 1201 1213 1217 1223
201–220 1229 1231 1237 1249 1259 1277 1279 1283 1289 1291 1297 1301 1303 1307 1319 1321 1327 1361 1367 1373
221–240 1381 1399 1409 1423 1427 1429 1433 1439 1447 1451 1453 1459 1471 1481 1483 1487 1489 1493 1499 1511
241–260 1523 1531 1543 1549 1553 1559 1567 1571 1579 1583 1597 1601 1607 1609 1613 1619 1621 1627 1637 1657
261–280 1663 1667 1669 1693 1697 1699 1709 1721 1723 1733 1741 1747 1753 1759 1777 1783 1787 1789 1801 1811
281–300 1823 1831 1847 1861 1867 1871 1873 1877 1879 1889 1901 1907 1913 1931 1933 1949 1951 1973 1979 1987
301–320 1993 1997 1999 2003 2011 2017 2027 2029 2039 2053 2063 2069 2081 2083 2087 2089 2099 2111 2113 2129
321–340 2131 2137 2141 2143 2153 2161 2179 2203 2207 2213 2221 2237 2239 2243 2251 2267 2269 2273 2281 2287
341–360 2293 2297 2309 2311 2333 2339 2341 2347 2351 2357 2371 2377 2381 2383 2389 2393 2399 2411 2417 2423
361–380 2437 2441 2447 2459 2467 2473 2477 2503 2521 2531 2539 2543 2549 2551 2557 2579 2591 2593 2609 2617
381–400 2621 2633 2647 2657 2659 2663 2671 2677 2683 2687 2689 2693 2699 2707 2711 2713 2719 2729 2731 2741
401–420 2749 2753 2767 2777 2789 2791 2797 2801 2803 2819 2833 2837 2843 2851 2857 2861 2879 2887 2897 2903
421–440 2909 2917 2927 2939 2953 2957 2963 2969 2971 2999 3001 3011 3019 3023 3037 3041 3049 3061 3067 3079
441–460 3083 3089 3109 3119 3121 3137 3163 3167 3169 3181 3187 3191 3203 3209 3217 3221 3229 3251 3253 3257
461–480 3259 3271 3299 3301 3307 3313 3319 3323 3329 3331 3343 3347 3359 3361 3371 3373 3389 3391 3407 3413
481–500 3433 3449 3457 3461 3463 3467 3469 3491 3499 3511 3517 3527 3529 3533 3539 3541 3547 3557 3559 3571
501–520 3581 3583 3593 3607 3613 3617 3623 3631 3637 3643 3659 3671 3673 3677 3691 3697 3701 3709 3719 3727
521–540 3733 3739 3761 3767 3769 3779 3793 3797 3803 3821 3823 3833 3847 3851 3853 3863 3877 3881 3889 3907
541–560 3911 3917 3919 3923 3929 3931 3943 3947 3967 3989 4001 4003 4007 4013 4019 4021 4027 4049 4051 4057
561–580 4073 4079 4091 4093 4099 4111 4127 4129 4133 4139 4153 4157 4159 4177 4201 4211 4217 4219 4229 4231
581–600 4241 4243 4253 4259 4261 4271 4273 4283 4289 4297 4327 4337 4339 4349 4357 4363 4373 4391 4397 4409
601–620 4421 4423 4441 4447 4451 4457 4463 4481 4483 4493 4507 4513 4517 4519 4523 4547 4549 4561 4567 4583
621–640 4591 4597 4603 4621 4637 4639 4643 4649 4651 4657 4663 4673 4679 4691 4703 4721 4723 4729 4733 4751
641–660 4759 4783 4787 4789 4793 4799 4801 4813 4817 4831 4861 4871 4877 4889 4903 4909 4919 4931 4933 4937
661–680 4943 4951 4957 4967 4969 4973 4987 4993 4999 5003 5009 5011 5021 5023 5039 5051 5059 5077 5081 5087
681–700 5099 5101 5107 5113 5119 5147 5153 5167 5171 5179 5189 5197 5209 5227 5231 5233 5237 5261 5273 5279
701–720 5281 5297 5303 5309 5323 5333 5347 5351 5381 5387 5393 5399 5407 5413 5417 5419 5431 5437 5441 5443
721–740 5449 5471 5477 5479 5483 5501 5503 5507 5519 5521 5527 5531 5557 5563 5569 5573 5581 5591 5623 5639
741–760 5641 5647 5651 5653 5657 5659 5669 5683 5689 5693 5701 5711 5717 5737 5741 5743 5749 5779 5783 5791
761–780 5801 5807 5813 5821 5827 5839 5843 5849 5851 5857 5861 5867 5869 5879 5881 5897 5903 5923 5927 5939
781–800 5953 5981 5987 6007 6011 6029 6037 6043 6047 6053 6067 6073 6079 6089 6091 6101 6113 6121 6131 6133
801–820 6143 6151 6163 6173 6197 6199 6203 6211 6217 6221 6229 6247 6257 6263 6269 6271 6277 6287 6299 6301
821–840 6311 6317 6323 6329 6337 6343 6353 6359 6361 6367 6373 6379 6389 6397 6421 6427 6449 6451 6469 6473
841–860 6481 6491 6521 6529 6547 6551 6553 6563 6569 6571 6577 6581 6599 6607 6619 6637 6653 6659 6661 6673
861–880 6679 6689 6691 6701 6703 6709 6719 6733 6737 6761 6763 6779 6781 6791 6793 6803 6823 6827 6829 6833
881–900 6841 6857 6863 6869 6871 6883 6899 6907 6911 6917 6947 6949 6959 6961 6967 6971 6977 6983 6991 6997
901–920 7001 7013 7019 7027 7039 7043 7057 7069 7079 7103 7109 7121 7127 7129 7151 7159 7177 7187 7193 7207
921–940 7211 7213 7219 7229 7237 7243 7247 7253 7283 7297 7307 7309 7321 7331 7333 7349 7351 7369 7393 7411
941–960 7417 7433 7451 7457 7459 7477 7481 7487 7489 7499 7507 7517 7523 7529 7537 7541 7547 7549 7559 7561
961–980 7573 7577 7583 7589 7591 7603 7607 7621 7639 7643 7649 7669 7673 7681 7687 7691 7699 7703 7717 7723
981–1000 7727 7741 7753 7757 7759 7789 7793 7817 7823 7829 7841 7853 7867 7873 7877 7879 7883 7901 7907 7919

(sequence A000040 in the OEIS).

The Goldbach conjecture verification project reports that it has computed all primes below 4×1018.[2] That means 95,676,260,903,887,607 primes[3] (nearly 1017), but they were not stored. There are known formulae to evaluate the prime-counting function (the number of primes below a given value) faster than computing the primes. This has been used to compute that there are 1,925,320,391,606,803,968,923 primes (roughly 2×1021) below 1023. A different computation found that there are 18,435,599,767,349,200,867,866 primes (roughly 2×1022) below 1024, if the Riemann hypothesis is true.[4]
Lists of primes by type

Below are listed the first prime numbers of many named forms and types. More details are in the article for the name. n is a natural number (including 0) in the definitions.
Balanced primes

Form: p − n, p, p + n

5, 53, 157, 173, 211, 257, 263, 373, 563, 593, 607, 653, 733, 947, 977, 1103, 1123, 1187, 1223, 1367, 1511, 1747, 1753, 1907, 2287, 2417, 2677, 2903, 2963, 3307, 3313, 3637, 3733, 4013, 4409, 4457, 4597, 4657, 4691, 4993, 5107, 5113, 5303, 5387, 5393 (sequence A006562 in the OEIS).

Bell primes

Primes that are the number of partitions of a set with n members.

2, 5, 877, 27644437, 35742549198872617291353508656626642567, 359334085968622831041960188598043661065388726959079837. The next term has 6,539 digits. (OEIS: A051131)

Carol primes

Of the form (2n−1)2 − 2.

7, 47, 223, 3967, 16127, 1046527, 16769023, 1073676287, 68718952447, 274876858367, 4398042316799, 1125899839733759, 18014398241046527, 1298074214633706835075030044377087 (OEIS: A091516)
Chen primes

Where p is prime and p+2 is either a prime or semiprime.

2, 3, 5, 7, 11, 13, 17, 19, 23, 29, 31, 37, 41, 47, 53, 59, 67, 71, 83, 89, 101, 107, 109, 113, 127, 131, 137, 139, 149, 157, 167, 179, 181, 191, 197, 199, 211, 227, 233, 239, 251, 257, 263, 269, 281, 293, 307, 311, 317, 337, 347, 353, 359, 379, 389, 401, 409 (OEIS: A109611)

Circular primes

A circular prime number is a number that remains prime on any cyclic rotation of its digits (in base 10).

2, 3, 5, 7, 11, 13, 17, 31, 37, 71, 73, 79, 97, 113, 131, 197, 199, 311, 337, 373, 719, 733, 919, 971, 991, 1193, 1931, 3119, 3779, 7793, 7937, 9311, 9377, 11939, 19391, 19937, 37199, 39119, 71993, 91193, 93719, 93911, 99371, 193939, 199933, 319993, 331999, 391939, 393919, 919393, 933199, 939193, 939391, 993319, 999331 (OEIS: A068652)

Some sources only list the smallest prime in each cycle, for example, listing 13, but omitting 31 (OEIS really calls this sequence circular primes, but not the above sequence):

2, 3, 5, 7, 11, 13, 17, 37, 79, 113, 197, 199, 337, 1193, 3779, 11939, 19937, 193939, 199933, 1111111111111111111, 11111111111111111111111 (OEIS: A016114)

All repunit primes are circular.

Cousin primes
See also: § Twin primes, § Prime triplets, and § Prime quadruplets

Where (p, p + 4) are both prime.

(3, 7), (7, 11), (13, 17), (19, 23), (37, 41), (43, 47), (67, 71), (79, 83), (97, 101), (103, 107), (109, 113), (127, 131), (163, 167), (193, 197), (223, 227), (229, 233), (277, 281) (OEIS: A023200, OEIS: A046132)

Cuban primes

Of the form \( {\displaystyle {\tfrac {x^{3}-y^{3}}{x-y}}} \) where x = y + 1.

7, 19, 37, 61, 127, 271, 331, 397, 547, 631, 919, 1657, 1801, 1951, 2269, 2437, 2791, 3169, 3571, 4219, 4447, 5167, 5419, 6211, 7057, 7351, 8269, 9241, 10267, 11719, 12097, 13267, 13669, 16651, 19441, 19927, 22447, 23497, 24571, 25117, 26227, 27361, 33391, 35317 (OEIS: A002407)

Of the form \( {\displaystyle {\tfrac {x^{3}-y^{3}}{x-y}}} \) where x = y + 2.

13, 109, 193, 433, 769, 1201, 1453, 2029, 3469, 3889, 4801, 10093, 12289, 13873, 18253, 20173, 21169, 22189, 28813, 37633, 43201, 47629, 60493, 63949, 65713, 69313, 73009, 76801, 84673, 106033, 108301, 112909, 115249 (OEIS: A002648)

Cullen primes

Of the form n×2n + 1.

3, 393050634124102232869567034555427371542904833 (OEIS: A050920)
Dihedral primes

Primes that remain prime when read upside down or mirrored in a seven-segment display.

2, 5, 11, 101, 181, 1181, 1811, 18181, 108881, 110881, 118081, 120121, 121021, 121151, 150151, 151051, 151121, 180181, 180811, 181081 (OEIS: A134996)
Eisenstein primes without imaginary part

Eisenstein integers that are irreducible and real numbers (primes of the form 3n − 1).

2, 5, 11, 17, 23, 29, 41, 47, 53, 59, 71, 83, 89, 101, 107, 113, 131, 137, 149, 167, 173, 179, 191, 197, 227, 233, 239, 251, 257, 263, 269, 281, 293, 311, 317, 347, 353, 359, 383, 389, 401 (OEIS: A003627)
Emirps

Primes that become a different prime when their decimal digits are reversed. The name "emirp" is obtained by reversing the word "prime".

13, 17, 31, 37, 71, 73, 79, 97, 107, 113, 149, 157, 167, 179, 199, 311, 337, 347, 359, 389, 701, 709, 733, 739, 743, 751, 761, 769, 907, 937, 941, 953, 967, 971, 983, 991 (OEIS: A006567)
Euclid primes

Of the form pn# + 1 (a subset of primorial primes).

3, 7, 31, 211, 2311, 200560490131 (OEIS: A018239[5])
Euler irregular primes

A prime p that divides Euler number \( {\displaystyle E_{2n}} \) for some\( {\displaystyle 0\leq 2n\leq p-3} \).

19, 31, 43, 47, 61, 67, 71, 79, 101, 137, 139, 149, 193, 223, 241, 251, 263, 277, 307, 311, 349, 353, 359, 373, 379, 419, 433, 461, 463, 491, 509, 541, 563, 571, 577, 587 (OEIS: A120337)
Euler (p, p − 3) irregular primes

Primes p such that \( {\displaystyle (p,p-3)} \) is an Euler irregular pair.

149, 241, 2946901 (OEIS: A198245)
Factorial primes

Of the form n! − 1 or n! + 1.

2, 3, 5, 7, 23, 719, 5039, 39916801, 479001599, 87178291199, 10888869450418352160768000001, 265252859812191058636308479999999, 263130836933693530167218012159999999, 8683317618811886495518194401279999999 (OEIS: A088054)
Fermat primes

Of the form \(2^{2^n} + 1 \)

3, 5, 17, 257, 65537 (OEIS: A019434)

As of August 2019 these are the only known Fermat primes, and conjecturally the only Fermat primes. The probability of the existence of another Fermat prime is less than one in a billion.[6]
Generalized Fermat primes

Of the form \(a^{2^n} + 1 \) for fixed integer a.

a = 2: 3, 5, 17, 257, 65537 (OEIS: A019434)

a = 4: 5, 17, 257, 65537

a = 6: 7, 37, 1297

a = 8: (does not exist)

a = 10: 11, 101

a = 12: 13

a = 14: 197

a = 16: 17, 257, 65537

a = 18: 19

a = 20: 401, 160001

a = 22: 23

a = 24: 577, 331777

As of April 2017 these are the only known generalized Fermat primes for a ≤ 24.
Fibonacci primes

Primes in the Fibonacci sequence F0 = 0, F1 = 1, Fn = Fn−1 + Fn−2.

2, 3, 5, 13, 89, 233, 1597, 28657, 514229, 433494437, 2971215073, 99194853094755497, 1066340417491710595814572169, 19134702400093278081449423917 (OEIS: A005478)

Fortunate primes

Fortunate numbers that are prime (it has been conjectured they all are).

3, 5, 7, 13, 17, 19, 23, 37, 47, 59, 61, 67, 71, 79, 89, 101, 103, 107, 109, 127, 151, 157, 163, 167, 191, 197, 199, 223, 229, 233, 239, 271, 277, 283, 293, 307, 311, 313, 331, 353, 373, 379, 383, 397 (OEIS: A046066)

Gaussian primes

Prime elements of the Gaussian integers; equivalently, primes of the form 4n + 3.

3, 7, 11, 19, 23, 31, 43, 47, 59, 67, 71, 79, 83, 103, 107, 127, 131, 139, 151, 163, 167, 179, 191, 199, 211, 223, 227, 239, 251, 263, 271, 283, 307, 311, 331, 347, 359, 367, 379, 383, 419, 431, 439, 443, 463, 467, 479, 487, 491, 499, 503 (OEIS: A002145)

Good primes

Primes pn for which pn2 > pn−i pn+i for all 1 ≤ i ≤ n−1, where pn is the nth prime.

5, 11, 17, 29, 37, 41, 53, 59, 67, 71, 97, 101, 127, 149, 179, 191, 223, 227, 251, 257, 269, 307 (OEIS: A028388)
Happy primes

Happy numbers that are prime.

7, 13, 19, 23, 31, 79, 97, 103, 109, 139, 167, 193, 239, 263, 293, 313, 331, 367, 379, 383, 397, 409, 487, 563, 617, 653, 673, 683, 709, 739, 761, 863, 881, 907, 937, 1009, 1033, 1039, 1093 (OEIS: A035497)
Harmonic primes

Primes p for which there are no solutions to Hk ≡ 0 (mod p) and Hk ≡ −ωp (mod p) for 1 ≤ k ≤ p−2, where Hk denotes the k-th harmonic number and ωp denotes the Wolstenholme quotient.[7]

5, 13, 17, 23, 41, 67, 73, 79, 107, 113, 139, 149, 157, 179, 191, 193, 223, 239, 241, 251, 263, 277, 281, 293, 307, 311, 317, 331, 337, 349 (OEIS: A092101)

Higgs primes for squares

Primes p for which p − 1 divides the square of the product of all earlier terms.

2, 3, 5, 7, 11, 13, 19, 23, 29, 31, 37, 43, 47, 53, 59, 61, 67, 71, 79, 101, 107, 127, 131, 139, 149, 151, 157, 173, 181, 191, 197, 199, 211, 223, 229, 263, 269, 277, 283, 311, 317, 331, 347, 349 (OEIS: A007459)
Highly cototient primes

Primes that are a cototient more often than any integer below it except 1.

2, 23, 47, 59, 83, 89, 113, 167, 269, 389, 419, 509, 659, 839, 1049, 1259, 1889 (OEIS: A105440)
Home primes

For n ≥ 2, write the prime factorization of n in base 10 and concatenate the factors; iterate until a prime is reached.

2, 3, 211, 5, 23, 7, 3331113965338635107, 311, 773, 11, 223, 13, 13367, 1129, 31636373, 17, 233, 19, 3318308475676071413, 37, 211, 23, 331319, 773, 3251, 13367, 227, 29, 547, 31, 241271, 311, 31397, 1129, 71129, 37, 373, 313, 3314192745739, 41, 379, 43, 22815088913, 3411949, 223, 47, 6161791591356884791277 (OEIS: A037274)

Irregular primes

Odd primes p that divide the class number of the p-th cyclotomic field.

37, 59, 67, 101, 103, 131, 149, 157, 233, 257, 263, 271, 283, 293, 307, 311, 347, 353, 379, 389, 401, 409, 421, 433, 461, 463, 467, 491, 523, 541, 547, 557, 577, 587, 593, 607, 613 (OEIS: A000928)

(p, p − 3) irregular primes

(See Wolstenholme prime)
(p, p − 5) irregular primes

Primes p such that (p, p−5) is an irregular pair.[8]

37
(p, p − 9) irregular primes

Primes p such that (p, p − 9) is an irregular pair.[8]

67, 877 (OEIS: A212557)
Isolated primes

Primes p such that neither p − 2 nor p + 2 is prime.

2, 23, 37, 47, 53, 67, 79, 83, 89, 97, 113, 127, 131, 157, 163, 167, 173, 211, 223, 233, 251, 257, 263, 277, 293, 307, 317, 331, 337, 353, 359, 367, 373, 379, 383, 389, 397, 401, 409, 439, 443, 449, 457, 467, 479, 487, 491, 499, 503, 509, 541, 547, 557, 563, 577, 587, 593, 607, 613, 631, 647, 653, 673, 677, 683, 691, 701, 709, 719, 727, 733, 739, 743, 751, 757, 761, 769, 773, 787, 797, 839, 853, 863, 877, 887, 907, 911, 919, 929, 937, 941, 947, 953, 967, 971, 977, 983, 991, 997 (OEIS: A007510)
Kynea primes

Of the form (2n + 1)2 − 2.

2, 7, 23, 79, 1087, 66047, 263167, 16785407, 1073807359, 17180131327, 68720001023, 4398050705407, 70368760954879, 18014398777917439, 18446744082299486207 (OEIS: A091514)
Leyland primes

Of the form xy + yx, with 1 < x < y.

17, 593, 32993, 2097593, 8589935681, 59604644783353249, 523347633027360537213687137, 43143988327398957279342419750374600193 (OEIS: A094133)

Long primes

Primes p for which, in a given base b, \( {\frac {b^{p-1}-1}{p}} \) gives a cyclic number. They are also called full reptend primes. Primes p for base 10:

7, 17, 19, 23, 29, 47, 59, 61, 97, 109, 113, 131, 149, 167, 179, 181, 193, 223, 229, 233, 257, 263, 269, 313, 337, 367, 379, 383, 389, 419, 433, 461, 487, 491, 499, 503, 509, 541, 571, 577, 593 (OEIS: A001913)
Lucas primes

Primes in the Lucas number sequence L0 = 2, L1 = 1, Ln = Ln−1 + Ln−2.

2,[9] 3, 7, 11, 29, 47, 199, 521, 2207, 3571, 9349, 3010349, 54018521, 370248451, 6643838879, 119218851371, 5600748293801, 688846502588399, 32361122672259149 (OEIS: A005479)

Lucky primes

Lucky numbers that are prime.

3, 7, 13, 31, 37, 43, 67, 73, 79, 127, 151, 163, 193, 211, 223, 241, 283, 307, 331, 349, 367, 409, 421, 433, 463, 487, 541, 577, 601, 613, 619, 631, 643, 673, 727, 739, 769, 787, 823, 883, 937, 991, 997 (OEIS: A031157)

Mersenne primes

Of the form 2n − 1.

3, 7, 31, 127, 8191, 131071, 524287, 2147483647, 2305843009213693951, 618970019642690137449562111, 162259276829213363391578010288127, 170141183460469231731687303715884105727 (OEIS: A000668)

As of 2018, there are 51 known Mersenne primes. The 13th, 14th, and 51st have respectively 157, 183, and 24,862,048 digits.

As of 2018, this class of prime numbers also contains the largest known prime: M82589933, the 51st known Mersenne prime.
Mersenne divisors

Primes p that divide 2n − 1, for some prime number n.

3, 7, 23, 31, 47, 89, 127, 167, 223, 233, 263, 359, 383, 431, 439, 479, 503, 719, 839, 863, 887, 983, 1103, 1319, 1367, 1399, 1433, 1439, 1487, 1823, 1913, 2039, 2063, 2089, 2207, 2351, 2383, 2447, 2687, 2767, 2879, 2903, 2999, 3023, 3119, 3167, 3343 (OEIS: A122094)

All Mersenne primes are, by definition, members of this sequence.
Mersenne prime exponents

Primes p such that 2p − 1 is prime.

2, 3, 5, 7, 13, 17, 19, 31, 61, 89, 107, 127, 521, 607, 1279, 2203, 2281, 3217, 4253, 4423, 9689, 9941, 11213, 19937, 21701, 23209, 44497, 86243, 110503, 132049, 216091, 756839, 859433, 1257787, 1398269, 2976221, 3021377, 6972593, 13466917, 20996011, 24036583, 25964951, 30402457, 32582657, 37156667, 42643801, 43112609 (OEIS: A000043)

As of December 2018 four more are known to be in the sequence, but it is not known whether they are the next:
57885161, 74207281, 77232917, 82589933
Double Mersenne primes

A subset of Mersenne primes of the form 22p−1 − 1 for prime p.

7, 127, 2147483647, 170141183460469231731687303715884105727 (primes in OEIS: A077586)

As of June 2017, these are the only known double Mersenne primes, and number theorists think these are probably the only double Mersenne primes.[citation needed]
Generalized repunit primes

Of the form (an − 1) / (a − 1) for fixed integer a.

For a = 2, these are the Mersenne primes, while for a = 10 they are the repunit primes. For other small a, they are given below:

a = 3: 13, 1093, 797161, 3754733257489862401973357979128773, 6957596529882152968992225251835887181478451547013 (OEIS: A076481)

a = 4: 5 (the only prime for a = 4)

a = 5: 31, 19531, 12207031, 305175781, 177635683940025046467781066894531, 14693679385278593849609206715278070972733319459651094018859396328480215743184089660644531 (OEIS: A086122)

a = 6: 7, 43, 55987, 7369130657357778596659, 3546245297457217493590449191748546458005595187661976371 (OEIS: A165210)

a = 7: 2801, 16148168401, 85053461164796801949539541639542805770666392330682673302530819774105141531698707146930307290253537320447270457

a = 8: 73 (the only prime for a = 8)

a = 9: none exist
Other generalizations and variations

Many generalizations of Mersenne primes have been defined. This include the following:

Primes of the form bn − (b − 1)n,[10][11][12] including the Mersenne primes and the cuban primes as special cases
Williams primes, of the form (b − 1)·bn − 1

Mills primes

Of the form ⌊θ3n⌋, where θ is Mills' constant. This form is prime for all positive integers n.

2, 11, 1361, 2521008887, 16022236204009818131831320183 (OEIS: A051254)
Minimal primes

Primes for which there is no shorter sub-sequence of the decimal digits that form a prime. There are exactly 26 minimal primes:

2, 3, 5, 7, 11, 19, 41, 61, 89, 409, 449, 499, 881, 991, 6469, 6949, 9001, 9049, 9649, 9949, 60649, 666649, 946669, 60000049, 66000049, 66600049 (OEIS: A071062)
Newman–Shanks–Williams primes

Newman–Shanks–Williams numbers that are prime.

7, 41, 239, 9369319, 63018038201, 489133282872437279, 19175002942688032928599 (OEIS: A088165)
Non-generous primes

Primes p for which the least positive primitive root is not a primitive root of p2. Three such primes are known; it is not known whether there are more.[13]

2, 40487, 6692367337 (OEIS: A055578)
Palindromic primes

Primes that remain the same when their decimal digits are read backwards.

2, 3, 5, 7, 11, 101, 131, 151, 181, 191, 313, 353, 373, 383, 727, 757, 787, 797, 919, 929, 10301, 10501, 10601, 11311, 11411, 12421, 12721, 12821, 13331, 13831, 13931, 14341, 14741 (OEIS: A002385)
Palindromic wing primes

Primes of the form \( {\frac {a{\big (}10^{m}-1{\big )}}{9}}\pm b\times 10^{\frac {m-1}{2}} \) with \( 0\leq a\pm b<10 \) .[14] This means all digits except the middle digit are equal.

101, 131, 151, 181, 191, 313, 353, 373, 383, 727, 757, 787, 797, 919, 929, 11311, 11411, 33533, 77377, 77477, 77977, 1114111, 1117111, 3331333, 3337333, 7772777, 7774777, 7778777, 111181111, 111191111, 777767777, 77777677777, 99999199999 (OEIS: A077798)

Partition primes

Partition function values that are prime.

2, 3, 5, 7, 11, 101, 17977, 10619863, 6620830889, 80630964769, 228204732751, 1171432692373, 1398341745571, 10963707205259, 15285151248481, 10657331232548839, 790738119649411319, 18987964267331664557 (OEIS: A049575)

Pell primes

Primes in the Pell number sequence P0 = 0, P1 = 1, Pn = 2Pn−1 + Pn−2.

2, 5, 29, 5741, 33461, 44560482149, 1746860020068409, 68480406462161287469, 13558774610046711780701, 4125636888562548868221559797461449 (OEIS: A086383)
Permutable primes

Any permutation of the decimal digits is a prime.

2, 3, 5, 7, 11, 13, 17, 31, 37, 71, 73, 79, 97, 113, 131, 199, 311, 337, 373, 733, 919, 991, 1111111111111111111, 11111111111111111111111 (OEIS: A003459)

It seems likely that all further permutable primes are repunits, i.e. contain only the digit 1.
Perrin primes

Primes in the Perrin number sequence P(0) = 3, P(1) = 0, P(2) = 2, P(n) = P(n−2) + P(n−3).

2, 3, 5, 7, 17, 29, 277, 367, 853, 14197, 43721, 1442968193, 792606555396977, 187278659180417234321, 66241160488780141071579864797 (OEIS: A074788)

Pierpont primes

Of the form 2u3v + 1 for some integers u,v ≥ 0.

These are also class 1- primes.

2, 3, 5, 7, 13, 17, 19, 37, 73, 97, 109, 163, 193, 257, 433, 487, 577, 769, 1153, 1297, 1459, 2593, 2917, 3457, 3889, 10369, 12289, 17497, 18433, 39367, 52489, 65537, 139969, 147457 (OEIS: A005109)
Pillai primes

Primes p for which there exist n > 0 such that p divides n! + 1 and n does not divide p − 1.

23, 29, 59, 61, 67, 71, 79, 83, 109, 137, 139, 149, 193, 227, 233, 239, 251, 257, 269, 271, 277, 293, 307, 311, 317, 359, 379, 383, 389, 397, 401, 419, 431, 449, 461, 463, 467, 479, 499 (OEIS: A063980)
Primes of the form n4 + 1

Of the form n4 + 1.[15][16]

2, 17, 257, 1297, 65537, 160001, 331777, 614657, 1336337, 4477457, 5308417, 8503057, 9834497, 29986577, 40960001, 45212177, 59969537, 65610001, 126247697, 193877777, 303595777, 384160001, 406586897, 562448657, 655360001 (OEIS: A037896)

Primeval primes

Primes for which there are more prime permutations of some or all the decimal digits than for any smaller number.

2, 13, 37, 107, 113, 137, 1013, 1237, 1367, 10079 (OEIS: A119535)
Primorial primes

Of the form pn# ± 1.

3, 5, 7, 29, 31, 211, 2309, 2311, 30029, 200560490131, 304250263527209, 23768741896345550770650537601358309 (union of OEIS: A057705 and OEIS: A018239[5])
Proth primes

Of the form k×2n + 1, with odd k and k < 2n.

3, 5, 13, 17, 41, 97, 113, 193, 241, 257, 353, 449, 577, 641, 673, 769, 929, 1153, 1217, 1409, 1601, 2113, 2689, 2753, 3137, 3329, 3457, 4481, 4993, 6529, 7297, 7681, 7937, 9473, 9601, 9857 (OEIS: A080076)

Pythagorean primes

Of the form 4n + 1.

5, 13, 17, 29, 37, 41, 53, 61, 73, 89, 97, 101, 109, 113, 137, 149, 157, 173, 181, 193, 197, 229, 233, 241, 257, 269, 277, 281, 293, 313, 317, 337, 349, 353, 373, 389, 397, 401, 409, 421, 433, 449 (OEIS: A002144)

Prime quadruplets
See also: § Cousin primes, § Twin primes, and § Prime triplets

Where (p, p+2, p+6, p+8) are all prime.

(5, 7, 11, 13), (11, 13, 17, 19), (101, 103, 107, 109), (191, 193, 197, 199), (821, 823, 827, 829), (1481, 1483, 1487, 1489), (1871, 1873, 1877, 1879), (2081, 2083, 2087, 2089), (3251, 3253, 3257, 3259), (3461, 3463, 3467, 3469), (5651, 5653, 5657, 5659), (9431, 9433, 9437, 9439) (OEIS: A007530, OEIS: A136720, OEIS: A136721, OEIS: A090258)
Quartan primes

Of the form x4 + y4, where x,y > 0.

2, 17, 97, 257, 337, 641, 881 (OEIS: A002645)
Ramanujan primes

Integers Rn that are the smallest to give at least n primes from x/2 to x for all x ≥ Rn (all such integers are primes).

2, 11, 17, 29, 41, 47, 59, 67, 71, 97, 101, 107, 127, 149, 151, 167, 179, 181, 227, 229, 233, 239, 241, 263, 269, 281, 307, 311, 347, 349, 367, 373, 401, 409, 419, 431, 433, 439, 461, 487, 491 (OEIS: A104272)
Regular primes

Primes p that do not divide the class number of the p-th cyclotomic field.

3, 5, 7, 11, 13, 17, 19, 23, 29, 31, 41, 43, 47, 53, 61, 71, 73, 79, 83, 89, 97, 107, 109, 113, 127, 137, 139, 151, 163, 167, 173, 179, 181, 191, 193, 197, 199, 211, 223, 227, 229, 239, 241, 251, 269, 277, 281 (OEIS: A007703)
Repunit primes

Primes containing only the decimal digit 1.

11, 1111111111111111111 (19 digits), 11111111111111111111111 (23 digits) (OEIS: A004022)

The next have 317, 1031, 49081, 86453, 109297, 270343 digits (OEIS: A004023)
Residue classes of primes

Of the form an + d for fixed integers a and d. Also called primes congruent to d modulo a.

The primes of the form 2n+1 are the odd primes, including all primes other than 2. Some sequences have alternate names: 4n+1 are Pythagorean primes, 4n+3 are the integer Gaussian primes, and 6n+5 are the Eisenstein primes (with 2 omitted). The classes 10n+d (d = 1, 3, 7, 9) are primes ending in the decimal digit d.

2n+1: 3, 5, 7, 11, 13, 17, 19, 23, 29, 31, 37, 41, 43, 47, 53 (OEIS: A065091)
4n+1: 5, 13, 17, 29, 37, 41, 53, 61, 73, 89, 97, 101, 109, 113, 137 (OEIS: A002144)
4n+3: 3, 7, 11, 19, 23, 31, 43, 47, 59, 67, 71, 79, 83, 103, 107 (OEIS: A002145)
6n+1: 7, 13, 19, 31, 37, 43, 61, 67, 73, 79, 97, 103, 109, 127, 139 (OEIS: A002476)
6n+5: 5, 11, 17, 23, 29, 41, 47, 53, 59, 71, 83, 89, 101, 107, 113 (OEIS: A007528)
8n+1: 17, 41, 73, 89, 97, 113, 137, 193, 233, 241, 257, 281, 313, 337, 353 (OEIS: A007519)
8n+3: 3, 11, 19, 43, 59, 67, 83, 107, 131, 139, 163, 179, 211, 227, 251 (OEIS: A007520)
8n+5: 5, 13, 29, 37, 53, 61, 101, 109, 149, 157, 173, 181, 197, 229, 269 (OEIS: A007521)
8n+7: 7, 23, 31, 47, 71, 79, 103, 127, 151, 167, 191, 199, 223, 239, 263 (OEIS: A007522)
10n+1: 11, 31, 41, 61, 71, 101, 131, 151, 181, 191, 211, 241, 251, 271, 281 (OEIS: A030430)
10n+3: 3, 13, 23, 43, 53, 73, 83, 103, 113, 163, 173, 193, 223, 233, 263 (OEIS: A030431)
10n+7: 7, 17, 37, 47, 67, 97, 107, 127, 137, 157, 167, 197, 227, 257, 277 (OEIS: A030432)
10n+9: 19, 29, 59, 79, 89, 109, 139, 149, 179, 199, 229, 239, 269, 349, 359 (OEIS: A030433)
12n+1: 13, 37, 61, 73, 97, 109, 157, 181, 193, 229, 241, 277, 313, 337, 349 (OEIS: A068228)
12n+5: 5, 17, 29, 41, 53, 89, 101, 113, 137, 149, 173, 197, 233, 257, 269 (OEIS: A040117)
12n+7: 7, 19, 31, 43, 67, 79, 103, 127, 139, 151, 163, 199, 211, 223, 271 (OEIS: A068229)
12n+11: 11, 23, 47, 59, 71, 83, 107, 131, 167, 179, 191, 227, 239, 251, 263 (OEIS: A068231)
Safe primes

Where p and (p−1) / 2 are both prime.

5, 7, 11, 23, 47, 59, 83, 107, 167, 179, 227, 263, 347, 359, 383, 467, 479, 503, 563, 587, 719, 839, 863, 887, 983, 1019, 1187, 1283, 1307, 1319, 1367, 1439, 1487, 1523, 1619, 1823, 1907 (OEIS: A005385)
Self primes in base 10

Primes that cannot be generated by any integer added to the sum of its decimal digits.

3, 5, 7, 31, 53, 97, 211, 233, 277, 367, 389, 457, 479, 547, 569, 613, 659, 727, 839, 883, 929, 1021, 1087, 1109, 1223, 1289, 1447, 1559, 1627, 1693, 1783, 1873 (OEIS: A006378)
Sexy primes

Where (p, p + 6) are both prime.

(5, 11), (7, 13), (11, 17), (13, 19), (17, 23), (23, 29), (31, 37), (37, 43), (41, 47), (47, 53), (53, 59), (61, 67), (67, 73), (73, 79), (83, 89), (97, 103), (101, 107), (103, 109), (107, 113), (131, 137), (151, 157), (157, 163), (167, 173), (173, 179), (191, 197), (193, 199) (OEIS: A023201, OEIS: A046117)
Smarandache–Wellin primes

Primes that are the concatenation of the first n primes written in decimal.

2, 23, 2357 (OEIS: A069151)

The fourth Smarandache-Wellin prime is the 355-digit concatenation of the first 128 primes that end with 719.
Solinas primes

Of the form 2a ± 2b ± 1, where 0 < b < a.

3, 5, 7, 11, 13 (OEIS: A165255)
Sophie Germain primes

Where p and 2p + 1 are both prime.

2, 3, 5, 11, 23, 29, 41, 53, 83, 89, 113, 131, 173, 179, 191, 233, 239, 251, 281, 293, 359, 419, 431, 443, 491, 509, 593, 641, 653, 659, 683, 719, 743, 761, 809, 911, 953 (OEIS: A005384)
Stern primes

Primes that are not the sum of a smaller prime and twice the square of a nonzero integer.

2, 3, 17, 137, 227, 977, 1187, 1493 (OEIS: A042978)

As of 2011, these are the only known Stern primes, and possibly the only existing.
Strobogrammatic primes

Primes that are also a prime number when rotated upside down. (This, as with its alphabetic counterpart the ambigram, is dependent upon the typeface.)

Using 0, 1, 8 and 6/9:

11, 101, 181, 619, 16091, 18181, 19861, 61819, 116911, 119611, 160091, 169691, 191161, 196961, 686989, 688889 (sequence A007597 in the OEIS)
Super-primes

Primes with a prime index in the sequence of prime numbers (the 2nd, 3rd, 5th, ... prime).

3, 5, 11, 17, 31, 41, 59, 67, 83, 109, 127, 157, 179, 191, 211, 241, 277, 283, 331, 353, 367, 401, 431, 461, 509, 547, 563, 587, 599, 617, 709, 739, 773, 797, 859, 877, 919, 967, 991 (OEIS: A006450)
Supersingular primes

There are exactly fifteen supersingular primes:

2, 3, 5, 7, 11, 13, 17, 19, 23, 29, 31, 41, 47, 59, 71 (OEIS: A002267)
Thabit primes

Of the form 3×2n − 1.

2, 5, 11, 23, 47, 191, 383, 6143, 786431, 51539607551, 824633720831, 26388279066623, 108086391056891903, 55340232221128654847, 226673591177742970257407 (OEIS: A007505)

The primes of the form 3×2n + 1 are related.

7, 13, 97, 193, 769, 12289, 786433, 3221225473, 206158430209, 6597069766657 (OEIS: A039687)
Prime triplets
See also: § Cousin primes, § Twin primes, and § Prime quadruplets

Where (p, p+2, p+6) or (p, p+4, p+6) are all prime.

(5, 7, 11), (7, 11, 13), (11, 13, 17), (13, 17, 19), (17, 19, 23), (37, 41, 43), (41, 43, 47), (67, 71, 73), (97, 101, 103), (101, 103, 107), (103, 107, 109), (107, 109, 113), (191, 193, 197), (193, 197, 199), (223, 227, 229), (227, 229, 233), (277, 281, 283), (307, 311, 313), (311, 313, 317), (347, 349, 353) (OEIS: A007529, OEIS: A098414, OEIS: A098415)
Truncatable prime
Left-truncatable

Primes that remain prime when the leading decimal digit is successively removed.

2, 3, 5, 7, 13, 17, 23, 37, 43, 47, 53, 67, 73, 83, 97, 113, 137, 167, 173, 197, 223, 283, 313, 317, 337, 347, 353, 367, 373, 383, 397, 443, 467, 523, 547, 613, 617, 643, 647, 653, 673, 683 (OEIS: A024785)
Right-truncatable

Primes that remain prime when the least significant decimal digit is successively removed.

2, 3, 5, 7, 23, 29, 31, 37, 53, 59, 71, 73, 79, 233, 239, 293, 311, 313, 317, 373, 379, 593, 599, 719, 733, 739, 797, 2333, 2339, 2393, 2399, 2939, 3119, 3137, 3733, 3739, 3793, 3797 (OEIS: A024770)
Two-sided

Primes that are both left-truncatable and right-truncatable. There are exactly fifteen two-sided primes:

2, 3, 5, 7, 23, 37, 53, 73, 313, 317, 373, 797, 3137, 3797, 739397 (OEIS: A020994)
Twin primes
See also: § Cousin primes, § Prime triplets, and § Prime quadruplets

Where (p, p+2) are both prime.

(3, 5), (5, 7), (11, 13), (17, 19), (29, 31), (41, 43), (59, 61), (71, 73), (101, 103), (107, 109), (137, 139), (149, 151), (179, 181), (191, 193), (197, 199), (227, 229), (239, 241), (269, 271), (281, 283), (311, 313), (347, 349), (419, 421), (431, 433), (461, 463) (OEIS: A001359, OEIS: A006512)
Unique primes

The list of primes p for which the period length of the decimal expansion of 1/p is unique (no other prime gives the same period).

3, 11, 37, 101, 9091, 9901, 333667, 909091, 99990001, 999999000001, 9999999900000001, 909090909090909091, 1111111111111111111, 11111111111111111111111, 900900900900990990990991 (OEIS: A040017)
Wagstaff primes

Of the form (2n + 1) / 3.

3, 11, 43, 683, 2731, 43691, 174763, 2796203, 715827883, 2932031007403, 768614336404564651, 201487636602438195784363, 845100400152152934331135470251, 56713727820156410577229101238628035243 (OEIS: A000979)

Values of n:

3, 5, 7, 11, 13, 17, 19, 23, 31, 43, 61, 79, 101, 127, 167, 191, 199, 313, 347, 701, 1709, 2617, 3539, 5807, 10501, 10691, 11279, 12391, 14479, 42737, 83339, 95369, 117239, 127031, 138937, 141079, 267017, 269987, 374321 (OEIS: A000978)
Wall–Sun–Sun primes

A prime p > 5, if p2 divides the Fibonacci number \( F_{p-\left({\frac {p}{5}}\right)}, \) where the Legendre symbol \( \left({\frac {p}{5}}\right) \) is defined as
\( \left({\frac {p}{5}}\right)={\begin{cases}1&{\textrm {if}}\;p\equiv \pm 1{\pmod {5}}\\-1&{\textrm {if}}\;p\equiv \pm 2{\pmod {5}}.\end{cases}} \)

As of 2018, no Wall-Sun-Sun primes are known.
Weakly prime numbers

Primes that having any one of their (base 10) digits changed to any other value will always result in a composite number.

294001, 505447, 584141, 604171, 971767, 1062599, 1282529, 1524181, 2017963, 2474431, 2690201, 3085553, 3326489, 4393139 (OEIS: A050249)
Wieferich primes

Primes p such that ap − 1 ≡ 1 (mod p2) for fixed integer a > 1.

2p − 1 ≡ 1 (mod p2): 1093, 3511 (OEIS: A001220)
3p − 1 ≡ 1 (mod p2): 11, 1006003 (OEIS: A014127)[17][18][19]
4p − 1 ≡ 1 (mod p2): 1093, 3511
5p − 1 ≡ 1 (mod p2): 2, 20771, 40487, 53471161, 1645333507, 6692367337, 188748146801 (OEIS: A123692)
6p − 1 ≡ 1 (mod p2): 66161, 534851, 3152573 (OEIS: A212583)
7p − 1 ≡ 1 (mod p2): 5, 491531 (OEIS: A123693)
8p − 1 ≡ 1 (mod p2): 3, 1093, 3511
9p − 1 ≡ 1 (mod p2): 2, 11, 1006003
10p − 1 ≡ 1 (mod p2): 3, 487, 56598313 (OEIS: A045616)
11p − 1 ≡ 1 (mod p2): 71[20]
12p − 1 ≡ 1 (mod p2): 2693, 123653 (OEIS: A111027)
13p − 1 ≡ 1 (mod p2): 2, 863, 1747591 (OEIS: A128667)[20]
14p − 1 ≡ 1 (mod p2): 29, 353, 7596952219 (OEIS: A234810)
15p − 1 ≡ 1 (mod p2): 29131, 119327070011 (OEIS: A242741)
16p − 1 ≡ 1 (mod p2): 1093, 3511
17p − 1 ≡ 1 (mod p2): 2, 3, 46021, 48947 (OEIS: A128668)[20]
18p − 1 ≡ 1 (mod p2): 5, 7, 37, 331, 33923, 1284043 (OEIS: A244260)
19p − 1 ≡ 1 (mod p2): 3, 7, 13, 43, 137, 63061489 (OEIS: A090968)[20]
20p − 1 ≡ 1 (mod p2): 281, 46457, 9377747, 122959073 (OEIS: A242982)
21p − 1 ≡ 1 (mod p2): 2
22p − 1 ≡ 1 (mod p2): 13, 673, 1595813, 492366587, 9809862296159 (OEIS: A298951)
23p − 1 ≡ 1 (mod p2): 13, 2481757, 13703077, 15546404183, 2549536629329 (OEIS: A128669)
24p − 1 ≡ 1 (mod p2): 5, 25633
25p − 1 ≡ 1 (mod p2): 2, 20771, 40487, 53471161, 1645333507, 6692367337, 188748146801

As of 2018, these are all known Wieferich primes with a ≤ 25.
Wilson primes

Primes p for which p2 divides (p−1)! + 1.

5, 13, 563 (OEIS: A007540)

As of 2018, these are the only known Wilson primes.
Wolstenholme primes

Primes p for which the binomial coefficient \( {{2p-1} \choose {p-1}}\equiv 1{\pmod {p^{4}}}. \)

16843, 2124679 (OEIS: A088164)

As of 2018, these are the only known Wolstenholme primes.
Woodall primes

Of the form n×2n − 1.

7, 23, 383, 32212254719, 2833419889721787128217599, 195845982777569926302400511, 4776913109852041418248056622882488319 (OEIS: A050918)
See also

Illegal prime
Largest known prime number
List of numbers
Prime gap
Prime number theorem
Probable prime
Pseudoprime
Strobogrammatic prime
Strong prime
Wieferich pair

References

Lehmer, D. N. (1982). List of prime numbers from 1 to 10,006,721. 165. Washington D.C.: Carnegie Institution of Washington. OL 16553580M. OL16553580M.
Tomás Oliveira e Silva, Goldbach conjecture verification Archived 24 May 2011 at the Wayback Machine. Retrieved 16 July 2013
(sequence A080127 in the OEIS)
Jens Franke (29 July 2010). "Conditional Calculation of pi(1024)". Archived from the original on 24 August 2014. Retrieved 17 May 2011.
OEIS: A018239 includes 2 = empty product of first 0 primes plus 1, but 2 is excluded in this list.
Boklan, Kent D.; Conway, John H. (2016). "Expect at most one billionth of a new Fermat Prime!". arXiv:1605.01371 [math.NT].
Boyd, D. W. (1994). "A p-adic Study of the Partial Sums of the Harmonic Series". Experimental Mathematics. 3 (4): 287–302. doi:10.1080/10586458.1994.10504298. Zbl 0838.11015. CiteSeerX: 10.1.1.56.7026. Archived from the original on 27 January 2016.
Johnson, W. (1975). "Irregular Primes and Cyclotomic Invariants" (PDF). Mathematics of Computation. AMS. 29 (129): 113–120. doi:10.2307/2005468. JSTOR 2005468. Archived from the original (PDF) on 20 December 2010.
It varies whether L0 = 2 is included in the Lucas numbers.
Sloane, N. J. A. (ed.). "Sequence A121091 (Smallest nexus prime of the form n^p - (n-1)^p, where p is an odd prime)". The On-Line Encyclopedia of Integer Sequences. OEIS Foundation.
Sloane, N. J. A. (ed.). "Sequence A121616 (Primes of form (n+1)^5 - n^5)". The On-Line Encyclopedia of Integer Sequences. OEIS Foundation.
Sloane, N. J. A. (ed.). "Sequence A121618 (Nexus primes of order 7 or primes of form n^7 - (n-1)^7)". The On-Line Encyclopedia of Integer Sequences. OEIS Foundation.
Paszkiewicz, Andrzej (2009). "A new prime p {\displaystyle p} p for which the least primitive root \( {\displaystyle ({\textrm {mod}}p)} \)and the least primitive root ( mod p 2 ) {\displaystyle ({\textrm {mod}}p^{2})} {\displaystyle ({\textrm {mod}}p^{2})} are not equal" (PDF). Math. Comp. American Mathematical Society. 78: 1193–1195. Bibcode:2009MaCom..78.1193P. doi:10.1090/S0025-5718-08-02090-5.
Caldwell, C.; Dubner, H. (1996–97). "The near repdigit primes \( A_{n-k-1}B_{1}A_{k} \), especially \( 9_{n-k-1}8_{1}9_{k} \)". Journal of Recreational Mathematics. 28 (1): 1–9.
Lal, M. (1967). "Primes of the Form n4 + 1" (PDF). Mathematics of Computation. AMS. 21: 245–247. doi:10.1090/S0025-5718-1967-0222007-9. ISSN 1088-6842. Archived (PDF) from the original on 13 January 2015.
Bohman, J. (1973). "New primes of the form n4 + 1". BIT Numerical Mathematics. Springer. 13 (3): 370–372. doi:10.1007/BF01951947. ISSN 1572-9125.
Ribenboim, P. (22 February 1996). The new book of prime number records. New York: Springer-Verlag. p. 347. ISBN 0-387-94457-5.
"Mirimanoff's Congruence: Other Congruences". Retrieved 26 January 2011.
Gallot, Y.; Moree, P.; Zudilin, W. (2011). "The Erdös-Moser equation 1k + 2k +...+ (m−1)k = mk revisited using continued fractions". Mathematics of Computation. American Mathematical Society. 80: 1221–1237. arXiv:0907.1356. doi:10.1090/S0025-5718-2010-02439-1.
Ribenboim, P. (2006). Die Welt der Primzahlen (PDF). Berlin: Springer. p. 240. ISBN 3-540-34283-4.

Undergraduate Texts in Mathematics

Graduate Texts in Mathematics

Graduate Studies in Mathematics

Mathematics Encyclopedia

World

Index

Hellenica World - Scientific Library

Retrieved from "http://en.wikipedia.org/"
All text is available under the terms of the GNU Free Documentation License