In these expressions,
\( {\displaystyle \phi (x)={\frac {1}{\sqrt {2\pi }}}e^{-{\frac {1}{2}}x^{2}}} \)
is the standard normal probability density function,
\( {\displaystyle \Phi (x)=\int _{-\infty }^{x}\phi (t)\,dt={\frac {1}{2}}\left(1+\operatorname {erf} \left({\frac {x}{\sqrt {2}}}\right)\right)} \)
is the corresponding cumulative distribution function (where erf is the error function) and
\( T(h,a)=\phi (h)\int _{0}^{a}{\frac {\phi (hx)}{1+x^{2}}}\,dx \)
is Owen's T function.
Owen[nb 1] has an extensive list of Gaussian-type integrals; only a subset is given below.
Indefinite integrals
\( \int \phi (x)\,dx=\Phi (x)+C \)
\( \int x\phi (x)\,dx=-\phi (x)+C \)
\( \int x^{2}\phi (x)\,dx=\Phi (x)-x\phi (x)+C \)
\( \int x^{{2k+1}}\phi (x)\,dx=-\phi (x)\sum _{{j=0}}^{k}{\frac {(2k)!!}{(2j)!!}}x^{{2j}}+C[nb 2] \)
\( \int x^{{2k+2}}\phi (x)\,dx=-\phi (x)\sum _{{j=0}}^{k}{\frac {(2k+1)!!}{(2j+1)!!}}x^{{2j+1}}+(2k+1)!!\,\Phi (x)+C \)
In these integrals, n!! is the double factorial: for even n it is equal to the product of all even numbers from 2 to n, and for odd n it is the product of all odd numbers from 1 to n ; additionally it is assumed that 0!! = (−1)!! = 1.
\( {\displaystyle \int \phi (x)^{2}\,dx={\frac {1}{2{\sqrt {\pi }}}}\Phi \left(x{\sqrt {2}}\right)+C} \)
\( {\displaystyle \int \phi (x)\phi (a+bx)\,dx={\frac {1}{t}}\phi \left({\frac {a}{t}}\right)\Phi \left(tx+{\frac {ab}{t}}\right)+C,\qquad t={\sqrt {1+b^{2}}}} \) [nb 3]
\( {\displaystyle \int x\phi (a+bx)\,dx=-{\frac {1}{b^{2}}}\left(\phi (a+bx)+a\Phi (a+bx)\right)+C} \)
\( {\displaystyle \int x^{2}\phi (a+bx)\,dx={\frac {1}{b^{3}}}\left((a^{2}+1)\Phi (a+bx)+(a-bx)\phi (a+bx)\right)+C} \)
\( \int \phi (a+bx)^{n}\,dx={\frac {1}{b{\sqrt {n(2\pi )^{{n-1}}}}}}\Phi \left({\sqrt {n}}(a+bx)\right)+C \)
\( {\displaystyle \int \Phi (a+bx)\,dx={\frac {1}{b}}\left((a+bx)\Phi (a+bx)+\phi (a+bx)\right)+C} \)
\( {\displaystyle \int x\Phi (a+bx)\,dx={\frac {1}{2b^{2}}}\left((b^{2}x^{2}-a^{2}-1)\Phi (a+bx)+(bx-a)\phi (a+bx)\right)+C} \)
\( {\displaystyle \int x^{2}\Phi (a+bx)\,dx={\frac {1}{3b^{3}}}\left((b^{3}x^{3}+a^{3}+3a)\Phi (a+bx)+(b^{2}x^{2}-abx+a^{2}+2)\phi (a+bx)\right)+C} \)
∫\( \int x^{n}\Phi (x)\,dx={\frac {1}{n+1}}\left(\left(x^{{n+1}}-nx^{{n-1}}\right)\Phi (x)+x^{n}\phi (x)+n(n-1)\int x^{{n-2}}\Phi (x)\,dx\right)+C \)
\( {\displaystyle \int x\phi (x)\Phi (a+bx)\,dx={\frac {b}{t}}\phi \left({\frac {a}{t}}\right)\Phi \left(xt+{\frac {ab}{t}}\right)-\phi (x)\Phi (a+bx)+C,\qquad t={\sqrt {1+b^{2}}}} \)
\( {\displaystyle \int \Phi (x)^{2}\,dx=x\Phi (x)^{2}+2\Phi (x)\phi (x)-{\frac {1}{\sqrt {\pi }}}\Phi \left(x{\sqrt {2}}\right)+C} \)
\( \int e^{{cx}}\phi (bx)^{n}\,dx={\frac {e^{{{\frac {c^{2}}{2nb^{2}}}}}}{b{\sqrt {n(2\pi )^{{n-1}}}}}}\Phi \left({\frac {b^{2}xn-c}{b{\sqrt {n}}}}\right)+C,\qquad b\neq 0,n>0 \)
Definite integrals
∫\( \int _{{-\infty }}^{\infty }x^{2}\phi (x)^{n}\,dx={\frac {1}{{\sqrt {n^{3}(2\pi )^{{n-1}}}}}} \)
\( {\displaystyle \int _{-\infty }^{0}\phi (ax)\Phi (bx)dx={\frac {1}{2\pi |a|}}\left({\frac {\pi }{2}}-\arctan \left({\frac {b}{|a|}}\right)\right)} \)
\( {\displaystyle \int _{0}^{\infty }\phi (ax)\Phi (bx)\,dx={\frac {1}{2\pi |a|}}\left({\frac {\pi }{2}}+\arctan \left({\frac {b}{|a|}}\right)\right)} \)
\( \int _{0}^{\infty }x\phi (x)\Phi (bx)\,dx={\frac {1}{2{\sqrt {2\pi }}}}\left(1+{\frac {b}{{\sqrt {1+b^{2}}}}}\right) \)
\( \int _{0}^{\infty }x^{2}\phi (x)\Phi (bx)\,dx={\frac {1}{4}}+{\frac {1}{2\pi }}\left({\frac {b}{1+b^{2}}}+\arctan(b)\right) \)
\( {\displaystyle \int _{0}^{\infty }x\phi (x)^{2}\Phi (x)\,dx={\frac {1}{4\pi {\sqrt {3}}}}} \)
\( {\displaystyle \int _{0}^{\infty }\Phi (bx)^{2}\phi (x)\,dx={\frac {1}{2\pi }}\left(\arctan(b)+\arctan {\sqrt {1+2b^{2}}}\right)} \)
\( \int _{{-\infty }}^{\infty }\Phi (a+bx)^{2}\phi (x)\,dx=\Phi \left({\frac {a}{{\sqrt {1+b^{2}}}}}\right)-2T\left({\frac {a}{{\sqrt {1+b^{2}}}}},{\frac {1}{{\sqrt {1+2b^{2}}}}}\right) \)
\( {\displaystyle \int _{-\infty }^{\infty }x\Phi (a+bx)^{2}\phi (x)\,dx={\frac {2b}{\sqrt {1+b^{2}}}}\phi \left({\frac {a}{t}}\right)\Phi \left({\frac {a}{{\sqrt {1+b^{2}}}{\sqrt {1+2b^{2}}}}}\right)} \) [nb 4]
\( {\displaystyle \int _{-\infty }^{\infty }\Phi (bx)^{2}\phi (x)\,dx={\frac {1}{\pi }}\arctan {\sqrt {1+2b^{2}}}} \)
\( \int _{{-\infty }}^{\infty }x\phi (x)\Phi (bx)\,dx=\int _{{-\infty }}^{\infty }x\phi (x)\Phi (bx)^{2}\,dx={\frac {b}{{\sqrt {2\pi (1+b^{2})}}}} \)
\( \int _{{-\infty }}^{\infty }\Phi (a+bx)\phi (x)\,dx=\Phi \left({\frac {a}{{\sqrt {1+b^{2}}}}}\right) \)
\( {\displaystyle \int _{-\infty }^{\infty }x\Phi (a+bx)\phi (x)\,dx={\frac {b}{t}}\phi \left({\frac {a}{t}}\right),\qquad t={\sqrt {1+b^{2}}}} \)
\( {\displaystyle \int _{0}^{\infty }x\Phi (a+bx)\phi (x)\,dx={\frac {b}{t}}\phi \left({\frac {a}{t}}\right)\Phi \left(-{\frac {ab}{t}}\right)+{\frac {1}{\sqrt {2\pi }}}\Phi (a),\qquad t={\sqrt {1+b^{2}}}} \)
\( {\displaystyle \int _{-\infty }^{\infty }\ln(x^{2}){\frac {1}{\sigma }}\phi \left({\frac {x}{\sigma }}\right)\,dx=\ln(\sigma ^{2})-\gamma -\ln 2\approx \ln(\sigma ^{2})-1.27036} \)
References
Owen (1980)
Patel & Read (1996) lists this integral above without the minus sign, which is an error. See calculation by WolframAlpha
Patel & Read (1996) report this integral with error, see WolframAlpha
Patel & Read (1996) report this integral incorrectly by omitting x from the integrand
Patel, Jagdish K.; Read, Campbell B. (1996). Handbook of the normal distribution (2nd ed.). CRC Press. ISBN 0-8247-9342-0.
Owen, D. (1980). "A table of normal integrals". Communications in Statistics: Simulation and Computation. B9: 389–419.
vte
Lists of integrals
Rational functions Irrational functions Trigonometric functions Inverse trigonometric functions Hyperbolic functions Inverse hyperbolic functions Exponential functions Logarithmic functions Gaussian functions Definite integrals
Undergraduate Texts in Mathematics
Graduate Studies in Mathematics
Hellenica World - Scientific Library
Retrieved from "http://en.wikipedia.org/"
All text is available under the terms of the GNU Free Documentation License