ART

In these expressions,

\( {\displaystyle \phi (x)={\frac {1}{\sqrt {2\pi }}}e^{-{\frac {1}{2}}x^{2}}} \)

is the standard normal probability density function,

\( {\displaystyle \Phi (x)=\int _{-\infty }^{x}\phi (t)\,dt={\frac {1}{2}}\left(1+\operatorname {erf} \left({\frac {x}{\sqrt {2}}}\right)\right)} \)

is the corresponding cumulative distribution function (where erf is the error function) and

\( T(h,a)=\phi (h)\int _{0}^{a}{\frac {\phi (hx)}{1+x^{2}}}\,dx \)

is Owen's T function.

Owen[nb 1] has an extensive list of Gaussian-type integrals; only a subset is given below.
Indefinite integrals

\( \int \phi (x)\,dx=\Phi (x)+C \)
\( \int x\phi (x)\,dx=-\phi (x)+C \)
\( \int x^{2}\phi (x)\,dx=\Phi (x)-x\phi (x)+C \)
\( \int x^{{2k+1}}\phi (x)\,dx=-\phi (x)\sum _{{j=0}}^{k}{\frac {(2k)!!}{(2j)!!}}x^{{2j}}+C[nb 2] \)
\( \int x^{{2k+2}}\phi (x)\,dx=-\phi (x)\sum _{{j=0}}^{k}{\frac {(2k+1)!!}{(2j+1)!!}}x^{{2j+1}}+(2k+1)!!\,\Phi (x)+C \)

In these integrals, n!! is the double factorial: for even n it is equal to the product of all even numbers from 2 to n, and for odd n it is the product of all odd numbers from 1 to n ; additionally it is assumed that 0!! = (−1)!! = 1.

\( {\displaystyle \int \phi (x)^{2}\,dx={\frac {1}{2{\sqrt {\pi }}}}\Phi \left(x{\sqrt {2}}\right)+C} \)
\( {\displaystyle \int \phi (x)\phi (a+bx)\,dx={\frac {1}{t}}\phi \left({\frac {a}{t}}\right)\Phi \left(tx+{\frac {ab}{t}}\right)+C,\qquad t={\sqrt {1+b^{2}}}} \) [nb 3]
\( {\displaystyle \int x\phi (a+bx)\,dx=-{\frac {1}{b^{2}}}\left(\phi (a+bx)+a\Phi (a+bx)\right)+C} \)
\( {\displaystyle \int x^{2}\phi (a+bx)\,dx={\frac {1}{b^{3}}}\left((a^{2}+1)\Phi (a+bx)+(a-bx)\phi (a+bx)\right)+C} \)
\( \int \phi (a+bx)^{n}\,dx={\frac {1}{b{\sqrt {n(2\pi )^{{n-1}}}}}}\Phi \left({\sqrt {n}}(a+bx)\right)+C \)
\( {\displaystyle \int \Phi (a+bx)\,dx={\frac {1}{b}}\left((a+bx)\Phi (a+bx)+\phi (a+bx)\right)+C} \)
\( {\displaystyle \int x\Phi (a+bx)\,dx={\frac {1}{2b^{2}}}\left((b^{2}x^{2}-a^{2}-1)\Phi (a+bx)+(bx-a)\phi (a+bx)\right)+C} \)
\( {\displaystyle \int x^{2}\Phi (a+bx)\,dx={\frac {1}{3b^{3}}}\left((b^{3}x^{3}+a^{3}+3a)\Phi (a+bx)+(b^{2}x^{2}-abx+a^{2}+2)\phi (a+bx)\right)+C} \)
∫\( \int x^{n}\Phi (x)\,dx={\frac {1}{n+1}}\left(\left(x^{{n+1}}-nx^{{n-1}}\right)\Phi (x)+x^{n}\phi (x)+n(n-1)\int x^{{n-2}}\Phi (x)\,dx\right)+C \)
\( {\displaystyle \int x\phi (x)\Phi (a+bx)\,dx={\frac {b}{t}}\phi \left({\frac {a}{t}}\right)\Phi \left(xt+{\frac {ab}{t}}\right)-\phi (x)\Phi (a+bx)+C,\qquad t={\sqrt {1+b^{2}}}} \)
\( {\displaystyle \int \Phi (x)^{2}\,dx=x\Phi (x)^{2}+2\Phi (x)\phi (x)-{\frac {1}{\sqrt {\pi }}}\Phi \left(x{\sqrt {2}}\right)+C} \)
\( \int e^{{cx}}\phi (bx)^{n}\,dx={\frac {e^{{{\frac {c^{2}}{2nb^{2}}}}}}{b{\sqrt {n(2\pi )^{{n-1}}}}}}\Phi \left({\frac {b^{2}xn-c}{b{\sqrt {n}}}}\right)+C,\qquad b\neq 0,n>0 \)

Definite integrals

∫\( \int _{{-\infty }}^{\infty }x^{2}\phi (x)^{n}\,dx={\frac {1}{{\sqrt {n^{3}(2\pi )^{{n-1}}}}}} \)
\( {\displaystyle \int _{-\infty }^{0}\phi (ax)\Phi (bx)dx={\frac {1}{2\pi |a|}}\left({\frac {\pi }{2}}-\arctan \left({\frac {b}{|a|}}\right)\right)} \)
\( {\displaystyle \int _{0}^{\infty }\phi (ax)\Phi (bx)\,dx={\frac {1}{2\pi |a|}}\left({\frac {\pi }{2}}+\arctan \left({\frac {b}{|a|}}\right)\right)} \)
\( \int _{0}^{\infty }x\phi (x)\Phi (bx)\,dx={\frac {1}{2{\sqrt {2\pi }}}}\left(1+{\frac {b}{{\sqrt {1+b^{2}}}}}\right) \)
\( \int _{0}^{\infty }x^{2}\phi (x)\Phi (bx)\,dx={\frac {1}{4}}+{\frac {1}{2\pi }}\left({\frac {b}{1+b^{2}}}+\arctan(b)\right) \)
\( {\displaystyle \int _{0}^{\infty }x\phi (x)^{2}\Phi (x)\,dx={\frac {1}{4\pi {\sqrt {3}}}}} \)
\( {\displaystyle \int _{0}^{\infty }\Phi (bx)^{2}\phi (x)\,dx={\frac {1}{2\pi }}\left(\arctan(b)+\arctan {\sqrt {1+2b^{2}}}\right)} \)
\( \int _{{-\infty }}^{\infty }\Phi (a+bx)^{2}\phi (x)\,dx=\Phi \left({\frac {a}{{\sqrt {1+b^{2}}}}}\right)-2T\left({\frac {a}{{\sqrt {1+b^{2}}}}},{\frac {1}{{\sqrt {1+2b^{2}}}}}\right) \)
\( {\displaystyle \int _{-\infty }^{\infty }x\Phi (a+bx)^{2}\phi (x)\,dx={\frac {2b}{\sqrt {1+b^{2}}}}\phi \left({\frac {a}{t}}\right)\Phi \left({\frac {a}{{\sqrt {1+b^{2}}}{\sqrt {1+2b^{2}}}}}\right)} \) [nb 4]
\( {\displaystyle \int _{-\infty }^{\infty }\Phi (bx)^{2}\phi (x)\,dx={\frac {1}{\pi }}\arctan {\sqrt {1+2b^{2}}}} \)
\( \int _{{-\infty }}^{\infty }x\phi (x)\Phi (bx)\,dx=\int _{{-\infty }}^{\infty }x\phi (x)\Phi (bx)^{2}\,dx={\frac {b}{{\sqrt {2\pi (1+b^{2})}}}} \)
\( \int _{{-\infty }}^{\infty }\Phi (a+bx)\phi (x)\,dx=\Phi \left({\frac {a}{{\sqrt {1+b^{2}}}}}\right) \)
\( {\displaystyle \int _{-\infty }^{\infty }x\Phi (a+bx)\phi (x)\,dx={\frac {b}{t}}\phi \left({\frac {a}{t}}\right),\qquad t={\sqrt {1+b^{2}}}} \)
\( {\displaystyle \int _{0}^{\infty }x\Phi (a+bx)\phi (x)\,dx={\frac {b}{t}}\phi \left({\frac {a}{t}}\right)\Phi \left(-{\frac {ab}{t}}\right)+{\frac {1}{\sqrt {2\pi }}}\Phi (a),\qquad t={\sqrt {1+b^{2}}}} \)
\( {\displaystyle \int _{-\infty }^{\infty }\ln(x^{2}){\frac {1}{\sigma }}\phi \left({\frac {x}{\sigma }}\right)\,dx=\ln(\sigma ^{2})-\gamma -\ln 2\approx \ln(\sigma ^{2})-1.27036} \)

References

Owen (1980)
Patel & Read (1996) lists this integral above without the minus sign, which is an error. See calculation by WolframAlpha
Patel & Read (1996) report this integral with error, see WolframAlpha

Patel & Read (1996) report this integral incorrectly by omitting x from the integrand

Patel, Jagdish K.; Read, Campbell B. (1996). Handbook of the normal distribution (2nd ed.). CRC Press. ISBN 0-8247-9342-0.

Owen, D. (1980). "A table of normal integrals". Communications in Statistics: Simulation and Computation. B9: 389–419.

vte

Lists of integrals

Rational functions Irrational functions Trigonometric functions Inverse trigonometric functions Hyperbolic functions Inverse hyperbolic functions Exponential functions Logarithmic functions Gaussian functions Definite integrals

Undergraduate Texts in Mathematics

Graduate Texts in Mathematics

Graduate Studies in Mathematics

Mathematics Encyclopedia

World

Index

Hellenica World - Scientific Library

Retrieved from "http://en.wikipedia.org/"
All text is available under the terms of the GNU Free Documentation License