Industrial-grade primes (the term is apparently due to Henri Cohen[1]) are integers for which primality has not been certified (i.e. rigorously proven), but they have undergone probable prime tests such as the Miller-Rabin primality test, which has a positive, but negligible, failure rate, or the Baillie-PSW primality test, which no composites are known to pass.
Industrial-grade primes are sometimes used instead of certified primes in algorithms such as RSA encryption, which require the user to generate large prime numbers. Certifying the primality of large numbers (over 100 digits for instance) is significantly harder than showing they are industrial-grade primes. The latter can be done almost instantly with a failure rate so low that it is highly unlikely to ever fail in practice. In other words, the number is believed to be prime with very high, but not absolute, confidence.
References
Chris Caldwell, The Prime Glossary: probable prime at The Prime Pages.
Prime number classes
By formula
Fermat (22n + 1) Mersenne (2p − 1) Double Mersenne (22p−1 − 1) Wagstaff (2p + 1)/3 Proth (k·2n + 1) Factorial (n! ± 1) Primorial (pn# ± 1) Euclid (pn# + 1) Pythagorean (4n + 1) Pierpont (2m·3n + 1) Quartan (x4 + y4) Solinas (2m ± 2n ± 1) Cullen (n·2n + 1) Woodall (n·2n − 1) Cuban (x3 − y3)/(x − y) Carol (2n − 1)2 − 2 Kynea (2n + 1)2 − 2 Leyland (xy + yx) Thabit (3·2n − 1) Williams ((b−1)·bn − 1) Mills (⌊A3n⌋)
By integer sequence
Fibonacci Lucas Pell Newman–Shanks–Williams Perrin Partitions Bell Motzkin
By property
Wieferich (pair) Wall–Sun–Sun Wolstenholme Wilson Lucky Fortunate Ramanujan Pillai Regular Strong Stern Supersingular (elliptic curve) Supersingular (moonshine theory) Good Super Higgs Highly cototient
Base-dependent
Happy Dihedral Palindromic Emirp Repunit (10n − 1)/9 Permutable Circular Truncatable Strobogrammatic Minimal Weakly Full reptend Unique Primeval Self Smarandache–Wellin Tetradic
Patterns
Twin (p, p + 2) Bi-twin chain (n − 1, n + 1, 2n − 1, 2n + 1, …) Triplet (p, p + 2 or p + 4, p + 6) Quadruplet (p, p + 2, p + 6, p + 8) k−Tuple Cousin (p, p + 4) Sexy (p, p + 6) Chen Sophie Germain/Safe (p, 2p + 1) Cunningham (p, 2p ± 1, 4p ± 3, 8p ± 7, ...) Arithmetic progression (p + a·n, n = 0, 1, 2, 3, ...) Balanced (consecutive p − n, p, p + n)
By size
Titanic (1,000+ digits) Gigantic (10,000+ digits) Mega (1,000,000+ digits) Largest known
Complex numbers
Eisenstein prime Gaussian prime
Composite numbers
Pseudoprime
Catalan Elliptic Euler Euler–Jacobi Fermat Frobenius Lucas Somer–Lucas Strong Carmichael number Almost prime Semiprime Interprime Pernicious
Related topics
Probable prime Industrial-grade prime Illegal prime Formula for primes Prime gap
First 60 primes
2 3 5 7 11 13 17 19 23 29 31 37 41 43 47 53 59 61 67 71 73 79 83 89 97 101 103 107 109 113 127 131 137 139 149 151 157 163 167 173 179 181 191 193 197 199 211 223 227 229 233 239 241 251 257 263 269 271 277 281
List of prime numbers
Undergraduate Texts in Mathematics
Graduate Studies in Mathematics
Hellenica World - Scientific Library
Retrieved from "http://en.wikipedia.org/"
All text is available under the terms of the GNU Free Documentation License