In number theory, a hemiperfect number is a positive integer with a half-integral abundancy index.
For a given odd number k, a number n is called k-hemiperfect if and only if the sum of all positive divisors of n (the divisor function, σ(n)) is equal to k/2 × n.
Smallest k-hemiperfect numbers
The following table gives an overview of the smallest k-hemiperfect numbers for k ≤ 17 (sequence A088912 in the OEIS):
k | Smallest k-hemiperfect number | Number of digits |
---|---|---|
3 | 2 | 1 |
5 | 24 | 2 |
7 | 4320 | 4 |
9 | 8910720 | 7 |
11 | 17116004505600 | 14 |
13 | 170974031122008628879954060917200710847692800 | 45 |
15 | 12749472205565550032020636281352368036406720997031277595140988449695952806020854579200000[1] | 89 |
17 | 27172904004644864174776390325441204588387876949911859015099963347683477337589882757168182488651338324482275518065870009252589097916253652597707421065171952334010184222064839170719744000000000[1] | 191 |
For example, 24 is 5-hemiperfect because the sum of the divisors of 24 is
1 + 2 + 3 + 4 + 6 + 8 + 12 + 24 = 60 = 5/2 × 24.
See also
Semiperfect number
References
"Number Theory". Numericana.com. Retrieved 2012-08-21.
Undergraduate Texts in Mathematics
Graduate Studies in Mathematics
Hellenica World - Scientific Library
Retrieved from "http://en.wikipedia.org/"
All text is available under the terms of the GNU Free Documentation License