In mathematics, Hadamard's lemma, named after Jacques Hadamard, is essentially a first-order form of Taylor's theorem, in which we can express a smooth, real-valued function exactly in a convenient manner.
Statement
Let ƒ be a smooth, real-valued function defined on an open, star-convex neighborhood U of a point a in n-dimensional Euclidean space. Then ƒ(x) can be expressed, for all x in U, in the form:
\( {\displaystyle f(x)=f(a)+\sum _{i=1}^{n}\left(x_{i}-a_{i}\right)g_{i}(x),} \)
where each gi is a smooth function on U, a = (a1, …, an), and x = (x1, …, xn).
Proof
Let x be in U. Let h be the map from [0,1] to the real numbers defined by
\( {\displaystyle h(t)=f(a+t(x-a)).} \)
Then since
\( {\displaystyle h'(t)=\sum _{i=1}^{n}{\frac {\partial f}{\partial x_{i}}}(a+t(x-a))\left(x_{i}-a_{i}\right),} \)
we have
\( {\displaystyle h(1)-h(0)=\int _{0}^{1}h'(t)\,dt=\int _{0}^{1}\sum _{i=1}^{n}{\frac {\partial f}{\partial x_{i}}}(a+t(x-a))\left(x_{i}-a_{i}\right)\,dt=\sum _{i=1}^{n}\left(x_{i}-a_{i}\right)\int _{0}^{1}{\frac {\partial f}{\partial x_{i}}}(a+t(x-a))\,dt.} \)
But, additionally, h(1) − h(0) = f(x) − f(a), so if we let
\( {\displaystyle g_{i}(x)=\int _{0}^{1}{\frac {\partial f}{\partial x_{i}}}(a+t(x-a))\,dt,} \)
we have proven the theorem.
References
Nestruev, Jet (2002). Smooth manifolds and observables. Berlin: Springer. ISBN 0-387-95543-7.
Undergraduate Texts in Mathematics
Graduate Studies in Mathematics
Hellenica World - Scientific Library
Retrieved from "http://en.wikipedia.org/"
All text is available under the terms of the GNU Free Documentation License