ART

In commutative algebra, Grothendieck local duality is a duality theorem for cohomology of modules over local rings, analogous to Serre duality of coherent sheaves.

Statement

Suppose that R is a Cohen–Macaulay local ring of dimension d with maximal ideal m and residue field k = R/m. Let E(k) be a Matlis module, an injective hull of k, and let Ω be the completion of its dualizing module. Then for any R-module M there is an isomorphism of modules over the completion of R:

\( \operatorname {Ext}_{R}^{i}(M,\overline \Omega )\cong \operatorname {Hom}_{R}(H_{m}^{{d-i}}(M),E(k)) \)

where Hm is a local cohomology group.

There is a generalization to Noetherian local rings that are not Cohen–Macaulay, that replaces the dualizing module with a dualizing complex.
See also

Matlis duality

References
Bruns, Winfried; Herzog, Jürgen (1993), Cohen–Macaulay rings, Cambridge Studies in Advanced Mathematics, 39, Cambridge University Press, ISBN 978-0-521-41068-7, MR 1251956


Undergraduate Texts in Mathematics

Graduate Texts in Mathematics

Graduate Studies in Mathematics

Mathematics Encyclopedia

World

Index

Hellenica World - Scientific Library

Retrieved from "http://en.wikipedia.org/"
All text is available under the terms of the GNU Free Documentation License