ART

In mathematics, the Griewank function is often used in testing of optimization, it is defined as follow[1]

\( 1+{\frac {1}{4000}}\sum _{{i=1}}^{n}x_{i}^{2}-\prod _{{i=1}}^{n}\cos \left({\frac {x_{i}}{{\sqrt {i}}}}\right) \)

The following paragraphs display the special cases of first, second and third order Griewank function, and their plots.

First-order Griewank function

\( {\displaystyle g:=1+(1/4000)\cdot x_{1}^{2}-\cos(x_{1})} \)

First order Griewank function has multiple maxima and minima.[2]

Let the derivative of Griewank function be zero:

\( {\displaystyle {\frac {1}{2000}}\cdot x_{1}+\sin(x_{1})=0} \)

Find its roots in the interval [−100..100] by means of numerical method,

In the interval [−10000,10000], the Griewank function has 6365 critical points.

Second-order Griewank function

Griewank function 3D plot

2nd order Griewank function 3D plot

2nd order Griewank function contour plot

2nd-order Griewank function contour plot

\( 1+{\frac {1}{4000}}x_{1}^{2}+{\frac {1}{4000}}x_{2}^{2}-\cos(x_{1})\cos \left({\frac 12}x_{2}{\sqrt {2}}\right) \)

Third order Griewank function

Third order Griewank function Maple animation

Third-order Griewank function Maple animation

\( \left\{1+{\frac {1}{4000}}\,x_{1}^{2}+{\frac {1}{4000}}\,x_{2}^{2}+{\frac {1}{4000}}\,{x_{{{3}}}}^{{2}}-\cos(x_{1})\cos \left({\frac 12}x_{2}{\sqrt {2}}\right)\cos \left({\frac 13}x_{3}{\sqrt {3}}\right)\right\} \)

References

Griewank, A. O. "Generalized Decent for Global Optimization." J. Opt. Th. Appl. 34, 11–39, 1981
Locatelli, M. "A Note on the Griewank Test Function." J. Global Opt. 25, 169–174, 2003

Undergraduate Texts in Mathematics

Graduate Texts in Mathematics

Graduate Studies in Mathematics

Mathematics Encyclopedia

World

Index

Hellenica World - Scientific Library

Retrieved from "http://en.wikipedia.org/"
All text is available under the terms of the GNU Free Documentation License