ART

In mathematics the Goodwin–Staton integral is defined as :[1]

\( G(z)=\int _{0}^{\infty }{\frac {e^{{-t^{2}}}}{t+z}}\,dt \)

It satisfies the following third-order nonlinear differential equation:

\( 4w(z)+8\,z{\frac {d}{dz}}w(z)+(2+2\,z^{2}){\frac {d^{{2}}}{dz^{2}}}w(z)+z{\frac {d^{3}}{dz^{3}}}w\left(z\right)=0 \)

Properties

Symmetry:

G(-z)=-G(z)

Expansion for small z:

\( {\displaystyle {\begin{aligned}G(z)={}&{\Big (}1-\gamma -\ln(z^{2})-i\operatorname {csgn} (iz^{2})\pi +{\frac {2i}{\sqrt {\pi }}}z\\[5pt]&\qquad {}+(-2+\gamma +\ln(z^{2})+i\operatorname {csgn} (iz^{2})\pi {\Big )}z^{2}-{\frac {4i}{3{\sqrt {\pi }}}}z^{3}\\[5pt]&\qquad {}+\left({\frac {5}{4}}-{\frac {1}{2}}\gamma -{\frac {1}{2}}\ln(z^{2})-{\frac {1}{2}}i\operatorname {csgn} (iz^{2})\pi \right)z^{4}+O(z^{5}))\end{aligned}}} \)

References

Frank William John Olver (ed.), N. M. Temme (Chapter contr.), NIST Handbook of Mathematical Functions, Chapter 7, p160,Cambridge University Press 2010

http://journals.cambridge.org/article_S0013091504001087
Mamedov, B.A. (2007). "Evaluation of the generalized Goodwin–Staton integral using binomial expansion theorem". Journal of Quantitative Spectroscopy and Radiative Transfer. 105: 8–11. doi:10.1016/j.jqsrt.2006.09.018.
http://dlmf.nist.gov/7.2
https://web.archive.org/web/20150225035306/http://discovery.dundee.ac.uk/portal/en/research/the-generalized-goodwinstaton-integral(3db9f429-7d7f-488c-a1d7-c8efffd01158).html
https://web.archive.org/web/20150225105452/http://discovery.dundee.ac.uk/portal/en/research/the-generalized-goodwinstaton-integral(3db9f429-7d7f-488c-a1d7-c8efffd01158)/export.html
http://www.damtp.cam.ac.uk/user/na/NA_papers/NA2009_02.pdf
F. W. J. Olver, Werner Rheinbolt, Academic Press, 2014, Mathematics,Asymptotics and Special Functions, 588 pages, ISBN 9781483267449 gbook

Mathematics Encyclopedia

World

Index

Hellenica World - Scientific Library

Retrieved from "http://en.wikipedia.org/"
All text is available under the terms of the GNU Free Documentation License