ART

In mathematics, the Genocchi numbers Gn, named after Angelo Genocchi, are a sequence of integers that satisfy the relation

\( {\displaystyle {\frac {-2t}{1+e^{-t}}}=\sum _{n=0}^{\infty }G_{n}{\frac {t^{n}}{n!}}} \)

The first few Genocchi numbers are 0, −1, −1, 0, 1, 0, −3, 0, 17 (sequence A226158 in the OEIS), see OEIS: A001469.
Properties

The generating function definition of the Genocchi numbers implies that they are rational numbers. In fact, G2n+1 = 0 for n ≥ 1 and (−1)nG2n is an odd positive integer.

Genocchi numbers Gn are related to Bernoulli numbers Bn by the formula

\( {\displaystyle G_{n}=2\,(1-2^{n})\,B_{n}.} \)

Combinatorial interpretations

The exponential generating function for the signed even Genocchi numbers (−1)nG2n is

\( {\displaystyle t\tan \left({\frac {t}{2}}\right)=\sum _{n\geq 1}(-1)^{n}G_{2n}{\frac {t^{2n}}{(2n)!}}} \)

They enumerate the following objects:

See also

Euler number

References

Weisstein, Eric W. "Genocchi Number". MathWorld.
Richard P. Stanley (1999). Enumerative Combinatorics, Volume 2, Exercise 5.8. Cambridge University Press. ISBN 0-521-56069-1
Gérard Viennot, Interprétations combinatoires des nombres d'Euler et de Genocchi, Seminaire de Théorie des Nombres de Bordeaux, Volume 11 (1981-1982)
Serkan Araci, Mehmet Acikgoz, Erdoğan Şen, Some New Identities of Genocchi Numbers and Polynomials

Undergraduate Texts in Mathematics

Graduate Texts in Mathematics

Graduate Studies in Mathematics

Mathematics Encyclopedia

World

Index

Hellenica World - Scientific Library

Retrieved from "http://en.wikipedia.org/"
All text is available under the terms of the GNU Free Documentation License