ART

In operator theory, the Gelfand–Mazur theorem is a theorem named after Israel Gelfand and Stanisław Mazur which states that a Banach algebra with unit over the complex numbers in which every nonzero element is invertible is isometrically isomorphic to the complex numbers, i. e., the only complex Banach algebra that is a division algebra is the complex numbers C.

The theorem follows from the fact that the spectrum of any element of a complex Banach algebra is nonempty: for every element a of a complex Banach algebra A there is some complex number λ such that λ1 − a is not invertible. This is a consequence of the complex-analyticity of the resolvent function. By assumption, λ1 − a = 0. So a = λ · 1. This gives an isomorphism from A to C.

A stronger and harder theorem was proved first by Stanisław Mazur alone, but it was published in France without a proof, when the author refused the editor's request to shorten his already short proof. Mazur's theorem states that there are (up to isomorphism) exactly three real Banach division algebras: the field of reals R, the field of complex numbers C, and the division algebra of quaternions H. Gelfand proved (independently) the easier, special, complex version a few years later, after Mazur. However, it was Gelfand's work that influenced the further progress in the area.

References

Rudin, Walter (January 1, 1991). Functional Analysis. International Series in Pure and Applied Mathematics. 8 (Second ed.). New York, NY: McGraw-Hill Science/Engineering/Math. ISBN 978-0-07-054236-5. OCLC 21163277.

Undergraduate Texts in Mathematics

Graduate Texts in Mathematics

Graduate Studies in Mathematics

Mathematics Encyclopedia

World

Index

Hellenica World - Scientific Library

Retrieved from "http://en.wikipedia.org/"
All text is available under the terms of the GNU Free Documentation License