ART

Gaussian Quantum Monte Carlo is a quantum Monte Carlo method that shows a potential solution to the fermion sign problem without the deficiencies of alternative approaches. Instead of the Hilbert space, this method works in the space of density matrices that can be spanned by an over-complete basis of gaussian operators using only positive coefficients. Containing only quadratic forms of the fermionic operators, no anti-commuting variables occur and any quantum state can be expressed as a real probability distribution.[1][2]

References

Corney, J. F.; Drummond, P. D. (2004-12-20). "Gaussian Quantum Monte Carlo Methods for Fermions and Bosons". Physical Review Letters. 93 (26): 260401. arXiv:quant-ph/0404052. Bibcode:2004PhRvL..93z0401C. doi:10.1103/PhysRevLett.93.260401. PMID 15697955. S2CID 17213264.
Assaad, F. F.; Werner, P.; Corboz, P.; Gull, E.; Troyer, M. (2005-12-30). "Symmetry projection schemes for Gaussian Monte Carlo methods". Physical Review B. 72 (22): 224518. arXiv:cond-mat/0509149. Bibcode:2005PhRvB..72v4518A. doi:10.1103/PhysRevB.72.224518. S2CID 119396085.

Undergraduate Texts in Mathematics

Graduate Texts in Mathematics

Graduate Studies in Mathematics

Mathematics Encyclopedia

World

Index

Hellenica World - Scientific Library

Retrieved from "http://en.wikipedia.org/"
All text is available under the terms of the GNU Free Documentation License