In complex analysis, a branch of mathematics, the Gauss–Lucas theorem gives a geometrical relation between the roots of a polynomial P and the roots of its derivative P′. The set of roots of a real or complex polynomial is a set of points in the complex plane. The theorem states that the roots of P′ all lie within the convex hull of the roots of P, that is the smallest convex polygon containing the roots of P. When P has a single root then this convex hull is a single point and when the roots lie on a line then the convex hull is a segment of this line. The Gauss–Lucas theorem, named after Carl Friedrich Gauss and Félix Lucas, is similar in spirit to Rolle's theorem.
Formal statement
If P is a (nonconstant) polynomial with complex coefficients, all zeros of P′ belong to the convex hull of the set of zeros of P.[1]
Special cases
It is easy to see that if P(x) = ax2 + bx + c is a second degree polynomial, the zero of P′(x) = 2ax + b is the average of the roots of P. In that case, the convex hull is the line segment with the two roots as endpoints and it is clear that the average of the roots is the middle point of the segment.
For a third degree complex polynomial P (cubic function) with three distinct zeros, Marden's theorem states that the zeros of P′ are the foci of the Steiner inellipse which is the unique ellipse tangent to the midpoints of the triangle formed by the zeros of P.
For a fourth degree complex polynomial P (quartic function) with four distinct zeros forming a concave quadrilateral, one of the z \) eros of P lies within the convex hull of the other three; all three zeros of P′ lie in two of the three triangles formed by the interior zero of P and two others zeros of P.[2]
In addition, if a polynomial of degree n of real coefficients has n distinct real zeros \( {\displaystyle x_{1}<x_{2}<\cdots <x_{n},} we see, using Rolle's theorem, that the zeros of the derivative polynomial are in the interval \( {\displaystyle [x_{1},x_{n}]} \) which is the convex hull of the set of roots.
The convex hull of the roots of the polynomial
\( {\displaystyle p_{n}x^{n}+p_{n-1}x^{n-1}+\cdots +p_{0}} \)
particularly includes the point
\( {\displaystyle -{\frac {p_{n-1}}{n\cdot p_{n}}}.} \)
Proof
Over the complex numbers, P is a product of prime factors
\( P(z)=\alpha \prod _{i=1}^{n}(z-a_{i}) \)
where the complex numbers \( a_{1},a_{2},\ldots ,a_{n} \) are the – not necessarily distinct – zeros of the polynomial P, the complex number \( \alpha \) is the leading coefficient of P and n is the degree of P. Let z be any complex number for which \( {\displaystyle P(z)\neq 0.} \) Then we have for the logarithmic derivative
\( {\frac {P^{\prime }(z)}{P(z)}}=\sum _{i=1}^{n}{\frac {1}{z-a_{i}}}. \)
In particular, if z is a zero of P' and \( P(z)\neq 0 \), then
\( {\displaystyle \sum _{i=1}^{n}{\frac {1}{z-a_{i}}}=0} \)
or
\( {\displaystyle \sum _{i=1}^{n}{\frac {{\overline {z}}-{\overline {a_{i}}}}{|z-a_{i}|^{2}}}=0.} \)
This may also be written as
\( {\displaystyle \left(\sum _{i=1}^{n}{\frac {1}{|z-a_{i}|^{2}}}\right){\overline {z}}=\left(\sum _{i=1}^{n}{\frac {1}{|z-a_{i}|^{2}}}{\overline {a_{i}}}\right).} \)
Taking their conjugates, we see that z is a weighted sum with positive coefficients that sum to one, or the barycenter on affine coordinates, of the complex numbers \( a_{i} \)(with different mass assigned on each root whose weights collectively sum to 1).
If \( {\displaystyle P(z)=P'(z)=0,} \) then \)
\( {\displaystyle z=1\cdot a_{i}+\left(\sum _{j=1,j\neq i}^{n}0\cdot {a_{j}}\right)} \)
for some i, and is still a convex combination of the roots of P.
See also
Marden's theorem
Bôcher's theorem
Sendov's conjecture
Routh–Hurwitz theorem
Hurwitz's theorem (complex analysis)
Descartes' rule of signs
Rouché's theorem
Properties of polynomial roots
Notes
Marden (1966), Theorem (6,1).
Rüdinger, A. (2014). "Strengthening the Gauss–Lucas theorem for polynomials with Zeros in the interior of the convex hull". Preprint. arXiv:1405.0689. Bibcode:2014arXiv1405.0689R.
References
Lucas, Félix (1874). "Propriétés géométriques des fractionnes rationnelles". CR Acad. Sci. Paris. 77: 431–433.
Morris Marden, Geometry of Polynomials, AMS, 1966.
External links
"Gauss-Lucas theorem", Encyclopedia of Mathematics, EMS Presss, 2001 [1994]
Lucas–Gauss Theorem by Bruce Torrence, the Wolfram Demonstrations Project.
Undergraduate Texts in Mathematics
Graduate Studies in Mathematics
Hellenica World - Scientific Library
Retrieved from "http://en.wikipedia.org/"
All text is available under the terms of the GNU Free Documentation License