ART

GAP (Groups, Algorithms and Programming) is a computer algebra system for computational discrete algebra with particular emphasis on computational group theory.

History

GAP was developed at Lehrstuhl D für Mathematik (LDFM), Rheinisch-Westfälische Technische Hochschule Aachen, Germany from 1986 to 1997. After the retirement of Joachim Neubüser from the chair of LDFM, the development and maintenance of GAP was coordinated by the School of Mathematical and Computational Sciences at the University of St Andrews, Scotland.[2] In the summer of 2005 coordination was transferred to an equal partnership of four 'GAP Centres', located at the University of St Andrews, RWTH Aachen, Technische Universität Braunschweig, and Colorado State University at Fort Collins; in April 2020, a fifth GAP Centre located at the TU Kaiserslautern was added [3]
Distribution

GAP and its sources, including packages (sets of user contributed programs), data library (including a list of small groups) and the manual, are distributed freely, subject to "copyleft" conditions. GAP runs on any Unix system, under Windows, and on Macintosh systems. The standard distribution requires about 300 MB (about 400 MB if all the packages are loaded). To run GAP, 128 MB of RAM is sufficient.

The user contributed packages are an important feature of the system, adding a great deal of functionality. GAP offers package authors the opportunity to submit these packages for a process of peer review, hopefully improving the quality of the final packages, and providing recognition akin to an academic publication for their authors. As of August 2006, there are 58 packages distributed with GAP, of which approximately 35 have been through this process.

An interface is available for using the SINGULAR computer algebra system from within GAP. GAP is also included in the mathematical software system SageMath.
Sample session

gap> G:=SmallGroup(8,1); # Set G to be a group of order 8.
<pc group of size 8 with 3 generators>
gap> i:=IsomorphismPermGroup(G); # Find an isomorphism from G to a group of permutations.
<action isomorphism>
gap> Image(i,G); # The image of G under I - these are the generators of im G.
Group([ (1,5,3,7,2,6,4,8), (1,3,2,4)(5,7,6,8), (1,2)(3,4)(5,6)(7,8) ])
gap> Elements(Image(i,G)); # All the elements of im G.
[ (), (1,2)(3,4)(5,6)(7,8), (1,3,2,4)(5,7,6,8), (1,4,2,3)(5,8,6,7),
(1,5,3,7,2,6,4,8), (1,6,3,8,2,5,4,7), (1,7,4,5,2,8,3,6), (1,8,4,6,2,7,3,5) ]

See also

Free and open-source software portal

Comparison of computer algebra systems

References

"GAP 4.11.0". www.gap-system.org. Retrieved 18 April 2020.
"Some history of GAP". Official GAP website. Retrieved September 27, 2019.

"GAP Centres". Official GAP website. Retrieved April 18, 2020.

External links

Official website

Undergraduate Texts in Mathematics

Graduate Texts in Mathematics

Graduate Studies in Mathematics

Mathematics Encyclopedia

World

Index

Hellenica World - Scientific Library

Retrieved from "http://en.wikipedia.org/"
All text is available under the terms of the GNU Free Documentation License