ART

In mathematics, especially linear algebra, the exchange matrices (also called the reversal matrix, backward identity, or standard involutory permutation) are special cases of permutation matrices, where the 1 elements reside on the antidiagonal and all other elements are zero. In other words, they are 'row-reversed' or 'column-reversed' versions of the identity matrix.[1]

\( {\displaystyle J_{2}={\begin{pmatrix}0&1\\1&0\end{pmatrix}};\quad J_{3}={\begin{pmatrix}0&0&1\\0&1&0\\1&0&0\end{pmatrix}};\quad J_{n}={\begin{pmatrix}0&0&\cdots &0&0&1\\0&0&\cdots &0&1&0\\0&0&\cdots &1&0&0\\\vdots &\vdots &&\vdots &\vdots &\vdots \\0&1&\cdots &0&0&0\\1&0&\cdots &0&0&0\end{pmatrix}}.} \)

Definition

If J is an n × n exchange matrix, then the elements of J are

\({\displaystyle J_{i,j}={\begin{cases}1,&i+j=n+1\\0,&i+j\neq n+1\\\end{cases}}} \)

Properties

Premultiplying a matrix by an exchange matrix flips vertically the positions of the former's rows, i.e.,

\( {\displaystyle {\begin{pmatrix}0&0&1\\0&1&0\\1&0&0\end{pmatrix}}{\begin{pmatrix}1&2&3\\4&5&6\\7&8&9\end{pmatrix}}={\begin{pmatrix}7&8&9\\4&5&6\\1&2&3\end{pmatrix}}.} \)

Postmultiplying a matrix by an exchange matrix flips horizontally the positions of the former's columns, i.e.,

\( {\displaystyle {\begin{pmatrix}1&2&3\\4&5&6\\7&8&9\end{pmatrix}}{\begin{pmatrix}0&0&1\\0&1&0\\1&0&0\end{pmatrix}}={\begin{pmatrix}3&2&1\\6&5&4\\9&8&7\end{pmatrix}}.} \)

Exchange matrices are symmetric; that is, JnT = Jn.
For any integer k, Jnk = I if k is even and Jnk = Jn if k is odd. In particular, Jn is an involutory matrix; that is, Jn−1 = Jn..
The trace of Jn is 1 if n is odd and 0 if n is even. In other words, the trace of Jn equals \( {\displaystyle n{\bmod {2}}} \).
The determinant of Jn equals \( {\displaystyle (-1)^{n(n-1)/2}} \).As a function of n, it has period 4, giving 1, 1, −1, −1 when n is congruent modulo 4 to 0, 1, 2, and 3 respectively.
The characteristic polynomial of Jn is \( {\displaystyle \det(\lambda I-J_{n})={\big (}(\lambda +1)(\lambda -1){\big )}^{n/2}} \) when n is even, and \( {\displaystyle (\lambda -1)^{(n+1)/2}(\lambda +1)^{(n-1)/2}} \) when n is odd.
The adjugate matrix of Jn is \( {\displaystyle \operatorname {adj} (J_{n})=\operatorname {sgn}(\pi _{n})J_{n}} \).

Relationships

See also

Pauli matrices (the first Pauli matrix is a 2 × 2 exchange matrix)

References

Horn, Roger A.; Johnson, Charles R. (2012), Matrix Analysis (2nd ed.), Cambridge University Press, p. 33, ISBN 9781139788885.

Undergraduate Texts in Mathematics

Graduate Texts in Mathematics

Graduate Studies in Mathematics

Mathematics Encyclopedia

World

Index

Hellenica World - Scientific Library

Retrieved from "http://en.wikipedia.org/"
All text is available under the terms of the GNU Free Documentation License