In mathematics, the Euler–Poisson–Darboux[1][2] equation is the partial differential equation
\( {\displaystyle u_{x,y}+{\frac {N(u_{x}+u_{y})}{x+y}}=0.} \)
This equation is named for Siméon Poisson, Leonhard Euler, and Gaston Darboux. It plays an important role in solving the classical wave equation.
This equation is related to
\( {\displaystyle u_{rr}+{\frac {m}{r}}u_{r}-u_{tt}=0,}
by \( {\displaystyle x=r+t} \) , \( {\displaystyle y=r-t} \), where \( {\displaystyle N={\frac {m}{2}}} \) [2] and some sources quote this equation when referring to the Euler–Poisson–Darboux equation.[3][4][5][6]
References
Zwillinger, D. (1997). Handbook of Differential Equations 3rd edition. Academic Press, Boston, MA.
1901-1980., Copson, E. T. (Edward Thomas) (1975). Partial differential equations. Cambridge: Cambridge University Press. ISBN 978-0521098939. OCLC 1499723.
Copson, E. T. (1956-06-12). "On a regular Cauchy problem for the Euler—Poisson—Darboux equation". Proc. R. Soc. Lond. A. 235 (1203): 560–572. Bibcode:1956RSPSA.235..560C. doi:10.1098/rspa.1956.0106. hdl:2027/mdp.39015095254382. ISSN 0080-4630.
Shishkina, Elina L.; Sitnik, Sergei M. (2017-07-15). "The general form of the Euler--Poisson--Darboux equation and application of transmutation method". arXiv:1707.04733 [math.CA].
Miles, E.P; Young, E.C (1966). "On a Cauchy problem for a generalized Euler-Poisson-Darboux equation with polyharmonic data". Journal of Differential Equations. 2 (4): 482–487. Bibcode:1966JDE.....2..482M. doi:10.1016/0022-0396(66)90056-8.
Fusaro, B. A. (1966). "A Solution of a Singular, Mixed Problem for the Equation of Euler-Poisson- Darboux (EPD)". The American Mathematical Monthly. 73 (6): 610–613. doi:10.2307/2314793. JSTOR 2314793.
External links
Moroşanu, C. (2001) [1994], "Euler–Poisson–Darboux equation", Encyclopedia of Mathematics, EMS Presss
Hellenica World - Scientific Library
Retrieved from "http://en.wikipedia.org/"
All text is available under the terms of the GNU Free Documentation License