In mathematics, there are two types of Euler integral:[1]
1. The Euler integral of the first kind is the beta function
\( {\displaystyle \mathrm {\mathrm {B} } (x,y)=\int _{0}^{1}t^{x-1}(1-t)^{y-1}\,dt={\frac {\Gamma (x)\Gamma (y)}{\Gamma (x+y)}}} \)
2. The Euler integral of the second kind is the gamma function
\({\displaystyle \Gamma (z)=\int _{0}^{\infty }t^{z-1}\,\mathrm {e} ^{-t}\,dt} \)
For positive integers m and n, the two integrals can be expressed in terms of factorials and binomial coefficients:
\( {\displaystyle \mathrm {B} (n,m)={\frac {(n-1)!(m-1)!}{(n+m-1)!}}={\frac {n+m}{nm{\binom {n+m}{n}}}}=\left({\frac {1}{n}}+{\frac {1}{m}}\right){\frac {1}{\binom {n+m}{n}}}} \)
\( {\displaystyle \Gamma (n)=(n-1)!} \)
See also
Euler integral (thermodynamics)
Leonhard Euler
List of topics named after Leonhard Euler
References
Jeffrey, Alan; and Dai, Hui-Hui (2008). Handbook of Mathematical Formulas 4th Ed. Academic Press. ISBN 978-0-12-374288-9. pp. 234–235
External links and references
Wolfram MathWorld on the Euler Integral
Undergraduate Texts in Mathematics
Graduate Studies in Mathematics
Hellenica World - Scientific Library
Retrieved from "http://en.wikipedia.org/"
All text is available under the terms of the GNU Free Documentation License