ART

Euler–Boole summation is a method for summing alternating series based on Euler's polynomials, which are defined by

\( {\displaystyle {\frac {2e^{xt}}{e^{t}+1}}=\sum _{n=0}E_{n}(x){\frac {t^{n}}{n!}}.} \)

The concept is named after Leonhard Euler and George Boole.

The periodic Euler functions are

\( {\displaystyle {\widetilde {E}}_{n}(x+1)=-{\widetilde {E}}_{n}(x){\text{ and }}{\widetilde {E}}_{n}(x)=E_{n}(x){\text{ for }}0<x<1.} \)

The Euler–Boole formula to sum alternating series is

\( {\displaystyle \sum _{j=a}^{n-1}(-1)^{j}f(j+h)={\frac {1}{2}}\sum _{k=0}^{m-1}{\frac {E_{k}(h)}{k!}}\left((-1)^{n-1}f^{(k)}(n)+(-1)^{a}f^{(k)}(a)\right)+{\frac {1}{2(m-1)!}}\int _{a}^{n}f^{(m)}(x){\widetilde {E}}_{m-1}(h-x)\,dx,} \)

where \( {\displaystyle a,m,n\in \mathbb {N} ,a<n,h\in [0,1]} \) and \( f^{(k)} \) is the kth derivative.

References

Jonathan M. Borwein, Neil J. Calkin, Dante Manna: Euler–Boole Summation Revisited. The American Mathematical Monthly, Vol. 116, No. 5 (May, 2009), pp. 387–412 (online, JSTOR)
Nico M. Temme: Special Functions: An Introduction to the Classical Functions of Mathematical Physics. Wiley, 2011, ISBN 9781118030813, pp. 17–18

Undergraduate Texts in Mathematics

Graduate Texts in Mathematics

Graduate Studies in Mathematics

Mathematics Encyclopedia

World

Index

Hellenica World - Scientific Library

Retrieved from "http://en.wikipedia.org/"
All text is available under the terms of the GNU Free Documentation License