ART

In differential geometry, a Dupin hypersurface is a submanifold in a space form, whose principal curvatures have globally constant multiplicities.[1]
Application

A hypersurface is called a Dupin hypersurface if the multiplicity of each principal curvature is constant on hypersurface and each principal curvature is constant along its associated principal directions.[2] All proper Dupin submanifolds arise as focal submanifolds of proper Dupin hypersurfaces.[3]
References

K. Shiohama (4 October 1989). Geometry of Manifolds. Elsevier. pp. 181–. ISBN 978-0-08-092578-3.
Themistocles M. Rassias (1992). The Problem of Plateau: A Tribute to Jesse Douglas & Tibor Radó. World Scientific. pp. 61–. ISBN 978-981-02-0556-0.
Robert Everist Greene; Shing-Tung Yau (1993). Partial Differential Equations on Manifolds. American Mathematical Soc. pp. 466–. ISBN 978-0-8218-1494-9.

Undergraduate Texts in Mathematics

Graduate Texts in Mathematics

Graduate Studies in Mathematics

Mathematics Encyclopedia

World

Index

Hellenica World - Scientific Library

Retrieved from "http://en.wikipedia.org/"
All text is available under the terms of the GNU Free Documentation License