ART

Decision theory (or the theory of choice not to be confused with choice theory) is the study of an agent's choices.[1] Decision theory can be broken into two branches: normative decision theory, which analyzes the outcomes of decisions or determines the optimal decisions given constraints and assumptions, and descriptive decision theory, which analyzes how agents actually make the decisions they do.

Decision theory is closely related to the field of game theory[2] and is an interdisciplinary topic, studied by economists, statisticians, data scientists, psychologists, biologists,[3] political and other social scientists, philosophers,[4] and computer scientists.

Empirical applications of this rich theory are usually done with the help of statistical and econometric methods.
Normative and descriptive

Normative decision theory is concerned with identification of optimal decisions where optimality is often determined by considering an ideal decision maker who is able to calculate with perfect accuracy and is in some sense fully rational. The practical application of this prescriptive approach (how people ought to make decisions) is called decision analysis and is aimed at finding tools, methodologies, and software (decision support systems) to help people make better decisions.[5][6]

In contrast, positive or descriptive decision theory is concerned with describing observed behaviors often under the assumption that the decision-making agents are behaving under some consistent rules. These rules may, for instance, have a procedural framework (e.g. Amos Tversky's elimination by aspects model) or an axiomatic framework (e.g. stochastic transitivity axioms), reconciling the Von Neumann-Morgenstern axioms with behavioral violations of the expected utility hypothesis, or they may explicitly give a functional form for time-inconsistent utility functions (e.g. Laibson's quasi-hyperbolic discounting).[5][6]

The prescriptions or predictions about behavior that positive decision theory produces allow for further tests of the kind of decision-making that occurs in practice. In recent decades, there has also been increasing interest in "behavioral decision theory", contributing to a re-evaluation of what useful decision-making requires.[7][8]
Types of decisions
Choice under uncertainty
Further information: Expected utility hypothesis

The area of choice under uncertainty represents the heart of decision theory. Known from the 17th century (Blaise Pascal invoked it in his famous wager, which is contained in his Pensées, published in 1670), the idea of expected value is that, when faced with a number of actions, each of which could give rise to more than one possible outcome with different probabilities, the rational procedure is to identify all possible outcomes, determine their values (positive or negative) and the probabilities that will result from each course of action, and multiply the two to give an "expected value", or the average expectation for an outcome; the action to be chosen should be the one that gives rise to the highest total expected value. In 1738, Daniel Bernoulli published an influential paper entitled Exposition of a New Theory on the Measurement of Risk, in which he uses the St. Petersburg paradox to show that expected value theory must be normatively wrong. He gives an example in which a Dutch merchant is trying to decide whether to insure a cargo being sent from Amsterdam to St Petersburg in winter. In his solution, he defines a utility function and computes expected utility rather than expected financial value.[9]

In the 20th century, interest was reignited by Abraham Wald's 1939 paper[10] pointing out that the two central procedures of sampling-distribution-based statistical-theory, namely hypothesis testing and parameter estimation, are special cases of the general decision problem. Wald's paper renewed and synthesized many concepts of statistical theory, including loss functions, risk functions, admissible decision rules, antecedent distributions, Bayesian procedures, and minimax procedures. The phrase "decision theory" itself was used in 1950 by E. L. Lehmann.[11]

The revival of subjective probability theory, from the work of Frank Ramsey, Bruno de Finetti, Leonard Savage and others, extended the scope of expected utility theory to situations where subjective probabilities can be used. At the time, von Neumann and Morgenstern's theory of expected utility[12] proved that expected utility maximization followed from basic postulates about rational behavior.

The work of Maurice Allais and Daniel Ellsberg showed that human behavior has systematic and sometimes important departures from expected-utility maximization.[13] The prospect theory of Daniel Kahneman and Amos Tversky renewed the empirical study of economic behavior with less emphasis on rationality presuppositions. It describes a way by which people make decisions when all of the outcomes carry a risk.[14] Kahneman and Tversky found three regularities – in actual human decision-making, "losses loom larger than gains"; persons focus more on changes in their utility-states than they focus on absolute utilities; and the estimation of subjective probabilities is severely biased by anchoring.
Intertemporal choice
Main article: Intertemporal choice

Intertemporal choice is concerned with the kind of choice where different actions lead to outcomes that are realised at different stages over time.[15] It is also described as cost-benefit decision making since it involves the choices between rewards that vary according to magnitude and time of arrival.[16] If someone received a windfall of several thousand dollars, they could spend it on an expensive holiday, giving them immediate pleasure, or they could invest it in a pension scheme, giving them an income at some time in the future. What is the optimal thing to do? The answer depends partly on factors such as the expected rates of interest and inflation, the person's life expectancy, and their confidence in the pensions industry. However even with all those factors taken into account, human behavior again deviates greatly from the predictions of prescriptive decision theory, leading to alternative models in which, for example, objective interest rates are replaced by subjective discount rates.
Interaction of decision makers

Some decisions are difficult because of the need to take into account how other people in the situation will respond to the decision that is taken. The analysis of such social decisions is more often treated under the label of game theory, rather than decision theory, though it involves the same mathematical methods. From the standpoint of game theory, most of the problems treated in decision theory are one-player games (or the one player is viewed as playing against an impersonal background situation). In the emerging field of socio-cognitive engineering, the research is especially focused on the different types of distributed decision-making in human organizations, in normal and abnormal/emergency/crisis situations.[17]
Complex decisions

Other areas of decision theory are concerned with decisions that are difficult simply because of their complexity, or the complexity of the organization that has to make them. Individuals making decisions are limited in resources (i.e. time and intelligence) and are therefore boundedly rational; the issue is thus, more than the deviation between real and optimal behaviour, the difficulty of determining the optimal behaviour in the first place. One example is the model of economic growth and resource usage developed by the Club of Rome to help politicians make real-life decisions in complex situations[citation needed]. Decisions are also affected by whether options are framed together or separately; this is known as the distinction bias.
Heuristics
Main article: Heuristics in judgment and decision-making

Heuristics in decision-making is the ability of making decisions based on unjustified or routine thinking. While quicker than step-by-step processing, heuristic thinking is also more likely to involve fallacies or inaccuracies.[18] The main use for heuristics in our daily routines is to decrease the amount of evaluative thinking we perform when making simple decisions, making them instead based on unconscious rules and focusing on some aspects of the decision, while ignoring others.[19] One example of a common and erroneous thought process that arises through heuristic thinking is the Gambler's Fallacy — believing that an isolated random event is affected by previous isolated random events. For example, if a coin is flipped to tails for a couple of turns, it still has the same probability of doing so; however it seems more likely, intuitively, for it to roll heads soon.[20] This happens because, due to routine thinking, one disregards the probability and concentrates on the ratio of the outcomes, meaning that one expects that in the long run the ratio of flips should be half for each outcome.[21] Another example is that decision-makers may be biased towards preferring moderate alternatives to extreme ones; the Compromise Effect operates under a mindset that the most moderate option carries the most benefit. In an incomplete information scenario, as in most daily decisions, the moderate option will look more appealing than either extreme, independent of the context, based only on the fact that it has characteristics that can be found at either extreme.[22]
Alternatives

A highly controversial issue is whether one can replace the use of probability in decision theory by other alternatives.
Probability theory

Advocates for the use of probability theory point to:

the work of Richard Threlkeld Cox for justification of the probability axioms,
the Dutch book paradoxes of Bruno de Finetti as illustrative of the theoretical difficulties that can arise from departures from the probability axioms, and
the complete class theorems, which show that all admissible decision rules are equivalent to the Bayesian decision rule for some utility function and some prior distribution (or for the limit of a sequence of prior distributions). Thus, for every decision rule, either the rule may be reformulated as a Bayesian procedure (or a limit of a sequence of such), or there is a rule that is sometimes better and never worse.

Alternatives to probability theory

The proponents of fuzzy logic, possibility theory, quantum cognition, Dempster–Shafer theory, and info-gap decision theory maintain that probability is only one of many alternatives and point to many examples where non-standard alternatives have been implemented with apparent success; notably, probabilistic decision theory is sensitive to assumptions about the probabilities of various events, while non-probabilistic rules such as minimax are robust, in that they do not make such assumptions.
Ludic fallacy
Main article: Ludic fallacy

A general criticism of decision theory based on a fixed universe of possibilities is that it considers the "known unknowns", not the "unknown unknowns"[citation needed]: it focuses on expected variations, not on unforeseen events, which some argue have outsized impact and must be considered – significant events may be "outside model". This line of argument, called the ludic fallacy, is that there are inevitable imperfections in modeling the real world by particular models, and that unquestioning reliance on models blinds one to their limits.
See also
Wikiquote has quotations related to: Decision theory

Bayesian statistics
Causal decision theory
Choice modelling
Constraint satisfaction
Daniel Kahneman
Decision making
Decision quality
Evidential decision theory
Game theory
Multi-criteria decision making
Newcomb's paradox
Operations research
Optimal decision
Preference (economics)
Prospect theory
Quantum cognition
Rationality
Secretary problem
Signal detection theory
Small-numbers game
Stochastic dominance
TOTREP
Two envelopes problem

References

Steele, Katie and Stefánsson, H. Orri, "Decision Theory", The Stanford Encyclopedia of Philosophy (Winter 2015 Edition), Edward N. Zalta (ed.), URL = [1]
Myerson, Roger B. (1991). "1.2: Basic concepts of Decision Theory". Game theory analysis of conflict. Cambridge, Massachusetts: Harvard University Press. ISBN 9780674728615.
Habibi I, Cheong R, Lipniacki T, Levchenko A, Emamian ES, Abdi A (April 2017). "Computation and measurement of cell decision making errors using single cell data". PLOS Computational Biology. 13 (4): e1005436. Bibcode:2017PLSCB..13E5436H. doi:10.1371/journal.pcbi.1005436. PMC 5397092. PMID 28379950.
Hansson, Sven Ove. "Decision theory: A brief introduction." (2005) Section 1.2: A truly interdisciplinary subject.
MacCrimmon, Kenneth R. (1968). "Descriptive and normative implications of the decision-theory postulates". Risk and Uncertainty. London: Palgrave Macmillan. pp. 3–32. OCLC 231114.
Slovic, Paul; Fischhoff, Baruch; Lichtenstein, Sarah (1977). "Behavioral Decision Theory". Annual Review of Psychology. 28 (1): 1–39. doi:10.1146/annurev.ps.28.020177.000245.
For instance, see: Anand, Paul (1993). Foundations of Rational Choice Under Risk. Oxford: Oxford University Press. ISBN 0-19-823303-5.
Keren GB, Wagenaar WA (1985). "On the psychology of playing blackjack: Normative and descriptive considerations with implications for decision theory". Journal of Experimental Psychology: General. 114 (2): 133–158. doi:10.1037/0096-3445.114.2.133.
For a review see Schoemaker, P. J. (1982). "The Expected Utility Model: Its Variants, Purposes, Evidence and Limitations". Journal of Economic Literature. 20: 529–563. JSTOR 2724488.
Wald, Abraham (1939). "Contributions to the Theory of Statistical Estimation and Testing Hypotheses". The Annals of Mathematical Statistics. 10 (4): 299–326. doi:10.1214/aoms/1177732144. MR 0000932.
Lehmann EL (1950). "Some Principles of the Theory of Testing Hypotheses". Annals of Mathematical Statistics. 21 (1): 1–26. doi:10.1214/aoms/1177729884. JSTOR 2236552.
Neumann Jv, Morgenstern O (1953) [1944]. Theory of Games and Economic Behavior (third ed.). Princeton, NJ: Princeton University Press.
Allais, M.; Hagen, G. M. (2013-03-14). Expected Utility Hypotheses and the Allais Paradox: Contemporary Discussions of the Decisions Under Uncertainty with Allais' Rejoinder. Dordrecht: Springer Science & Business Media. p. 333. ISBN 9789048183548.
Morvan, Camille; Jenkins, William J. (2017-07-05). Judgment Under Uncertainty: Heuristics and Biases. London: Macat International Ltd. p. 13. ISBN 9781912303687.
Karwan, Mark; Spronk, Jaap; Wallenius, Jyrki (2012). Essays In Decision Making: A Volume in Honour of Stanley Zionts. Berlin: Springer Science & Business Media. p. 135. ISBN 9783642644993.
Hess, Thomas M.; Strough, JoNell; Löckenhoff, Corinna (2015). Aging and Decision Making: Empirical and Applied Perspectives. London: Elsevier. p. 21. ISBN 9780124171558.
Crozier, M. & Friedberg, E. 1995. "Organization and Collective Action. Our Contribution to Organizational Analysis" in Bacharach S.B, Gagliardi P. & Mundell P. (Eds). Research in the Sociology of Organizations. Vol. XIII, Special Issue on European Perspectives of Organizational Theory, Greenwich, CT: JAI Press.
Johnson EJ, Payne JW (April 1985). "Effort and Accuracy in Choice". Management Science. 31 (4): 395–414. doi:10.1287/mnsc.31.4.395.
Bobadilla-Suarez S, Love BC (January 2018). "Fast or frugal, but not both: Decision heuristics under time pressure" (PDF). Journal of Experimental Psychology: Learning, Memory, and Cognition. 44 (1): 24–33. doi:10.1037/xlm0000419. PMC 5708146. PMID 28557503.
Roe RM, Busemeyer JR, Townsend JT (2001). "Multialternative decision field theory: A dynamic connectionst model of decision making". Psychological Review. 108 (2): 370–392. doi:10.1037/0033-295X.108.2.370. PMID 11381834.
Xu J, Harvey N (May 2014). "Carry on winning: the gamblers' fallacy creates hot hand effects in online gambling". Cognition. 131 (2): 173–80. doi:10.1016/j.cognition.2014.01.002. PMID 24549140.

Chuang S, Kao DT, Cheng Y, Chou C (March 2012). "The effect of incomplete information on the compromise effect". Judgment and Decision Making. 7 (2): 196–206. CiteSeerX 10.1.1.419.4767.

Further reading

Akerlof, George A.; Yellen, Janet L. (May 1987). "Rational Models of Irrational Behavior" (PDF). 77 (2): 137–142.
Anand, Paul (1993). Foundations of Rational Choice Under Risk. Oxford: Oxford University Press. ISBN 978-0-19-823303-9. (an overview of the philosophical foundations of key mathematical axioms in subjective expected utility theory – mainly normative)
Arthur, W. Brian (May 1991). "Designing Economic Agents that Act like Human Agents: A Behavioral Approach to Bounded Rationality" (PDF). The American Economic Review. 81 (2): 353–9.
Berger, James O. (1985). Statistical decision theory and Bayesian Analysis (2nd ed.). New York: Springer-Verlag. ISBN 978-0-387-96098-2. MR 0804611.
Bernardo JM, Smith AF (1994). Bayesian Theory. Wiley. ISBN 978-0-471-92416-6. MR 1274699.
Clemen, Robert; Reilly, Terence (2014). Making Hard Decisions with DecisionTools: An Introduction to Decision Analysis (3rd ed.). Stamford CT: Cengage. ISBN 978-0-538-79757-3. (covers normative decision theory)
De Groot, Morris, Optimal Statistical Decisions. Wiley Classics Library. 2004. (Originally published 1970.) ISBN 0-471-68029-X.
Goodwin, Paul; Wright, George (2004). Decision Analysis for Management Judgment (3rd ed.). Chichester: Wiley. ISBN 978-0-470-86108-0. (covers both normative and descriptive theory)
Hansson, Sven Ove. "Decision Theory: A Brief Introduction" (PDF). Archived from the original (PDF) on July 5, 2006.
Khemani, Karan, Ignorance is Bliss: A study on how and why humans depend on recognition heuristics in social relationships, the equity markets and the brand market-place, thereby making successful decisions, 2005.
Leach, Patrick (2006). Why Can't You Just Give Me the Number? An Executive's Guide to Using Probabilistic Thinking to Manage Risk and to Make Better Decisions. Probabilistic. ISBN 978-0-9647938-5-9. A rational presentation of probabilistic analysis.
Miller L (1985). "Cognitive risk-taking after frontal or temporal lobectomy--I. The synthesis of fragmented visual information". Neuropsychologia. 23 (3): 359–69. doi:10.1016/0028-3932(85)90022-3. PMID 4022303.
Miller L, Milner B (1985). "Cognitive risk-taking after frontal or temporal lobectomy--II. The synthesis of phonemic and semantic information". Neuropsychologia. 23 (3): 371–9. doi:10.1016/0028-3932(85)90023-5. PMID 4022304.
North, D.W. (1968). "A tutorial introduction to decision theory". IEEE Transactions on Systems Science and Cybernetics. 4 (3): 200–210. CiteSeerX 10.1.1.352.8089. doi:10.1109/TSSC.1968.300114. Reprinted in Shafer & Pearl. (also about normative decision theory)
Peterson, Martin (2009). An Introduction to Decision Theory. Cambridge University Press. ISBN 978-0-521-71654-3.
Raiffa, Howard (1997). Decision Analysis: Introductory Lectures on Choices Under Uncertainty. McGraw Hill. ISBN 978-0-07-052579-5.
Robert, Christian (2007). The Bayesian Choice. Springer Texts in Statistics (2nd ed.). New York: Springer. doi:10.1007/0-387-71599-1. ISBN 978-0-387-95231-4. MR 1835885.
Shafer, Glenn; Pearl, Judea, eds. (1990). Readings in uncertain reasoning. San Mateo, CA: Morgan Kaufmann.
Smith, J.Q. (1988). Decision Analysis: A Bayesian Approach. Chapman and Hall. ISBN 978-0-412-27520-3.
Charles Sanders Peirce and Joseph Jastrow (1885). "On Small Differences in Sensation". Memoirs of the National Academy of Sciences. 3: 73–83. http://psychclassics.yorku.ca/Peirce/small-diffs.htm
Ramsey, Frank Plumpton; "Truth and Probability" (PDF), Chapter VII in The Foundations of Mathematics and other Logical Essays (1931).
de Finetti, Bruno (September 1989). "Probabilism: A Critical Essay on the Theory of Probability and on the Value of Science". Erkenntnis. 31. (translation of 1931 article)
de Finetti, Bruno (1937). "La Prévision: ses lois logiques, ses sources subjectives". Annales de l'Institut Henri Poincaré.

de Finetti, Bruno. "Foresight: its Logical Laws, Its Subjective Sources," (translation of the 1937 article in French) in H. E. Kyburg and H. E. Smokler (eds), Studies in Subjective Probability, New York: Wiley, 1964.

de Finetti, Bruno. Theory of Probability, (translation by AFM Smith of 1970 book) 2 volumes, New York: Wiley, 1974-5.
Donald Davidson, Patrick Suppes and Sidney Siegel (1957). Decision-Making: An Experimental Approach. Stanford University Press.
Pfanzagl, J (1967). "Subjective Probability Derived from the Morgenstern-von Neumann Utility Theory". In Martin Shubik (ed.). Essays in Mathematical Economics In Honor of Oskar Morgenstern. Princeton University Press. pp. 237–251.
Pfanzagl, J. in cooperation with V. Baumann and H. Huber (1968). "Events, Utility and Subjective Probability". Theory of Measurement. Wiley. pp. 195–220.
Morgenstern, Oskar (1976). "Some Reflections on Utility". In Andrew Schotter (ed.). Selected Economic Writings of Oskar Morgenstern. New York University Press. pp. 65–70. ISBN 978-0-8147-7771-8.
Non-Robust Models in Statistics by Lev B. Klebanov, Svetlozat T. Rachev and Frank J. Fabozzi, Nova Scientific Publishers, Inc. New York, 2009.

vte

Paradoxes
Philosophical

Analysis Buridan's bridge Dream argument Epicurean Fiction Fitch's knowability Free will Goodman's Hedonism Liberal Meno's Mere addition Moore's Newcomb's Nihilism Omnipotence Preface Rule-following White horse Zeno's

Logical
Self-reference

Barber Berry Bhartrhari's Burali-Forti Court Crocodile Curry's Epimenides Grelling–Nelson Kleene–Rosser Liar
Card No-no Pinocchio Quine's Yablo's Opposite Day Richard's Russell's Socratic Hilbert's Hotel

Vagueness

Theseus' ship
List of examples Sorites

Others

Barbershop Catch-22 Drinker Entailment Lottery Plato's beard Raven Ross's Unexpected hanging "What the Tortoise Said to Achilles" Heat death paradox Olbers' paradox

Economic

Allais Antitrust Arrow information Bertrand Braess's Competition Income and fertility Downs–Thomson Easterlin Edgeworth Ellsberg European Gibson's Giffen good Icarus Jevons Leontief Lucas Mandeville's Mayfield's Metzler Plenty Productivity Prosperity Scitovsky Service recovery St. Petersburg Thrift Toil Tullock Value

Decision theory

Abilene Apportionment
Alabama New states Population Arrow's Buridan's ass Chainstore Condorcet's Decision-making Downs Ellsberg Fenno's Fredkin's Green Hedgehog's Inventor's Kavka's toxin puzzle Morton's fork Navigation Newcomb's Parrondo's Prevention Prisoner's dilemma Tolerance Willpower

List-Class article List Category Category Wikipedia book Book

Industrial and applied mathematics
Computational

Algorithms
design analysis Automata theory Coding theory Computational logic Cryptography Information theory

Discrete

Computer algebra Computational number theory Combinatorics Graph theory Discrete geometry

Analysis

Approximation theory Clifford analysis
Clifford algebra Differential equations
Complex differential equations Ordinary differential equations Partial differential equations Stochastic differential equations Differential geometry
Differential forms Gauge theory Geometric analysis Dynamical systems
Chaos theory Control theory Functional analysis
Operator algebra Operator theory Harmonic analysis
Fourier analysis Multilinear algebra
Exterior Geometric Tensor Vector Multivariable calculus
Exterior Geometric Tensor Vector Numerical analysis
Numerical linear algebra Numerical methods for ordinary differential equations Numerical methods for partial differential equations Validated numerics Variational calculus

Probability theory

Distributions (random variables) Stochastic processes / analysis Path integral Stochastic variational calculus

Mathematical
physics

Analytical mechanics
Lagrangian Hamiltonian Field theory
Classical Conformal Effective Gauge Quantum Statistical Potential theory String theory
Topological

Algebraic structures

Algebra of physical space Feynman integral Quantum group Renormalization group Representation theory Spacetime algebra

Decision sciences

Game theory Operations research Optimization Social choice theory Statistics Mathematical economics Mathematical finance

Other applications

Biology Chemistry Psychology Sociology "The Unreasonable Effectiveness of Mathematics in the Natural Sciences"

Related

Mathematics

Organizations

Society for Industrial and Applied Mathematics
Japan Society for Industrial and Applied Mathematics Société de Mathématiques Appliquées et Industrielles International Council for Industrial and Applied Mathematics

Category Mathematics portal / outline / topics list

Subfields of and cyberneticians involved in cybernetics
Subfields

Artificial intelligence Biological cybernetics Biomedical cybernetics Biorobotics Biosemiotics Neurocybernetics Catastrophe theory Computational neuroscience Connectionism Control theory Cybernetics in the Soviet Union Decision theory Emergence Engineering cybernetics Homeostasis Information theory Management cybernetics Medical cybernetics Second-order cybernetics Semiotics Sociocybernetics Polycontexturality Synergetics

Cyberneticians

Alexander Lerner Alexey Lyapunov Alfred Radcliffe-Brown Allenna Leonard Anthony Wilden Buckminster Fuller Charles François Claude Bernard Cliff Joslyn Erich von Holst Ernst von Glasersfeld Francis Heylighen Francisco Varela Frederic Vester Charles Geoffrey Vickers Gordon Pask Gordon S. Brown Gregory Bateson Heinz von Foerster Humberto Maturana I. A. Richards Igor Aleksander Jacque Fresco Jakob von Uexküll Jason Jixuan Hu Jay Wright Forrester Jennifer Wilby John N. Warfield Kevin Warwick Ludwig von Bertalanffy Maleyka Abbaszadeh Manfred Clynes Margaret Mead Marian Mazur N. Katherine Hayles Natalia Bekhtereva Niklas Luhmann Norbert Wiener Pyotr Grigorenko Qian Xuesen Ranulph Glanville Robert Trappl Sergei P. Kurdyumov Anthony Stafford Beer Stuart Kauffman Stuart Umpleby Talcott Parsons Ulla Mitzdorf Valentin Turchin Valentin Braitenberg William Ross Ashby Walter Bradford Cannon Walter Pitts Warren McCulloch William Grey Walter

Undergraduate Texts in Mathematics

Graduate Texts in Mathematics

Graduate Studies in Mathematics

Mathematics Encyclopedia

World

Index

Hellenica World - Scientific Library

Retrieved from "http://en.wikipedia.org/"
All text is available under the terms of the GNU Free Documentation License