In numerical linear algebra, a convergent matrix is a matrix that converges to the zero matrix under matrix exponentiation.
Background
When successive powers of a matrix T become small (that is, when all of the entries of T approach zero, upon raising T to successive powers), the matrix T converges to the zero matrix. A regular splitting of a non-singular matrix A results in a convergent matrix T. A semi-convergent splitting of a matrix A results in a semi-convergent matrix T. A general iterative method converges for every initial vector if T is convergent, and under certain conditions if T is semi-convergent.
Definition
We call an n × n matrix T a convergent matrix if
\( {\displaystyle \lim _{k\to \infty }(\mathbf {T} ^{k})_{ij}=0,} \) (1)
for each i = 1, 2, ..., n and j = 1, 2, ..., n.[1][2][3]
Example
Let
\( \begin{align} & \mathbf{T} = \begin{pmatrix} \frac{1}{4} & \frac{1}{2} \\[4pt] 0 & \frac{1}{4} \end{pmatrix}. \end{align} \)
Computing successive powers of T, we obtain
\( \begin{align} & \mathbf{T}^2 = \begin{pmatrix} \frac{1}{16} & \frac{1}{4} \\[4pt] 0 & \frac{1}{16} \end{pmatrix}, \quad \mathbf{T}^3 = \begin{pmatrix} \frac{1}{64} & \frac{3}{32} \\[4pt] 0 & \frac{1}{64} \end{pmatrix}, \quad \mathbf{T}^4 = \begin{pmatrix} \frac{1}{256} & \frac{1}{32} \\[4pt] 0 & \frac{1}{256} \end{pmatrix}, \quad \mathbf{T}^5 = \begin{pmatrix} \frac{1}{1024} & \frac{5}{512} \\[4pt] 0 & \frac{1}{1024} \end{pmatrix}, \end{align} \)
\( \begin{align} \mathbf{T}^6 = \begin{pmatrix} \frac{1}{4096} & \frac{3}{1024} \\[4pt] 0 & \frac{1}{4096} \end{pmatrix}, \end{align} \)
and, in general,
\( \begin{align} \mathbf{T}^k = \begin{pmatrix} (\frac{1}{4})^k & \frac{k}{2^{2k - 1}} \\[4pt] 0 & (\frac{1}{4})^k \end{pmatrix}. \end{align} \)
Since
\( \lim_{k \to \infty} \left( \frac{1}{4} \right)^k = 0 \)
and
\( \lim_{k \to \infty} \frac{k}{2^{2k - 1}} = 0, \)
T is a convergent matrix. Note that ρ(T) = 1/4, where ρ(T) represents the spectral radius of T, since 1/4 is the only eigenvalue of T.
Characterizations
Let T be an n × n matrix. The following properties are equivalent to T being a convergent matrix:
\( {\displaystyle \lim _{k\to \infty }\|\mathbf {T} ^{k}\|=0,} \) for some natural norm;
\( {\displaystyle \lim _{k\to \infty }\|\mathbf {T} ^{k}\|=0,} \) for all natural norms;
\( {\displaystyle \rho (\mathbf {T} )<1}; \)
\( {\displaystyle \lim _{k\to \infty }\mathbf {T} ^{k}\mathbf {x} =\mathbf {0} ,} \) for every x.[4][5][6][7]
Iterative methods
Main article: Iterative method
A general iterative method involves a process that converts the system of linear equations
\( {\displaystyle \mathbf {Ax} =\mathbf {b} } \) (2)
into an equivalent system of the form
\( {\displaystyle \mathbf {x} =\mathbf {Tx} +\mathbf {c} } \) (3)
for some matrix T and vector c. After the initial vector x(0) is selected, the sequence of approximate solution vectors is generated by computing
\( {\displaystyle \mathbf {x} ^{(k+1)}=\mathbf {Tx} ^{(k)}+\mathbf {c} } \) (4)
for each k ≥ 0.[8][9] For any initial vector x(0) ∈ \( \mathbb {R} ^{n} \) , the sequence \( {\displaystyle \lbrace \mathbf {x} ^{\left(k\right)}\rbrace _{k=0}^{\infty }} \) defined by (4), for each k ≥ 0 and c ≠ 0, converges to the unique solution of (3) if and only if ρ(T) < 1, that is, T is a convergent matrix.[10][11]
Regular splitting
Main article: Matrix splitting
A matrix splitting is an expression which represents a given matrix as a sum or difference of matrices. In the system of linear equations (2) above, with A non-singular, the matrix A can be split, that is, written as a difference
\( {\displaystyle \mathbf {A} =\mathbf {B} -\mathbf {C} } \) (5)
so that (2) can be re-written as (4) above. The expression (5) is a regular splitting of A if and only if B−1 ≥ 0 and C ≥ 0, that is, B−1 and C have only nonnegative entries. If the splitting (5) is a regular splitting of the matrix A and A−1 ≥ 0, then ρ(T) < 1 and T is a convergent matrix. Hence the method (4) converges.[12][13]
Semi-convergent matrix
We call an n × n matrix T a semi-convergent matrix if the limit
\( {\displaystyle \lim _{k\to \infty }\mathbf {T} ^{k}} \) (6)
exists.[14] If A is possibly singular but (2) is consistent, that is, b is in the range of A, then the sequence defined by (4) converges to a solution to (2) for every x(0) ∈ \( \mathbb {R} ^{n} \) if and only if T is semi-convergent. In this case, the splitting (5) is called a semi-convergent splitting of A.[15]
See also
Gauss–Seidel method
Jacobi method
List of matrices
Nilpotent matrix
Successive over-relaxation
Notes
Burden & Faires (1993, p. 404)
Isaacson & Keller (1994, p. 14)
Varga (1962, p. 13)
Burden & Faires (1993, p. 404)
Isaacson & Keller (1994, pp. 14,63)
Varga (1960, p. 122)
Varga (1962, p. 13)
Burden & Faires (1993, p. 406)
Varga (1962, p. 61)
Burden & Faires (1993, p. 412)
Isaacson & Keller (1994, pp. 62–63)
Varga (1960, pp. 122–123)
Varga (1962, p. 89)
Meyer & Plemmons (1977, p. 699)
Meyer & Plemmons (1977, p. 700)
References
Burden, Richard L.; Faires, J. Douglas (1993), Numerical Analysis (5th ed.), Boston: Prindle, Weber and Schmidt, ISBN 0-534-93219-3.
Isaacson, Eugene; Keller, Herbert Bishop (1994), Analysis of Numerical Methods, New York: Dover, ISBN 0-486-68029-0.
Carl D. Meyer, Jr.; R. J. Plemmons (Sep 1977). "Convergent Powers of a Matrix with Applications to Iterative Methods for Singular Linear Systems". SIAM Journal on Numerical Analysis. 14 (4): 699–705. doi:10.1137/0714047.
Varga, Richard S. (1960). "Factorization and Normalized Iterative Methods". In Langer, Rudolph E. (ed.). Boundary Problems in Differential Equations. Madison: University of Wisconsin Press. pp. 121–142. LCCN 60-60003.
Varga, Richard S. (1962), Matrix Iterative Analysis, New Jersey: Prentice–Hall, LCCN 62-21277.
vte
Numerical linear algebra
Key concepts
Floating point Numerical stability
Problems
System of linear equations Matrix decompositions Matrix multiplication (algorithms) Matrix splitting Sparse problems
Hardware
CPU cache TLB Cache-oblivious algorithm SIMD Multiprocessing
Software
MATLAB Basic Linear Algebra Subprograms (BLAS) LAPACK Specialized libraries General purpose software
Undergraduate Texts in Mathematics
Graduate Studies in Mathematics
Hellenica World - Scientific Library
Retrieved from "http://en.wikipedia.org/"
All text is available under the terms of the GNU Free Documentation License