ART

In algebra, the continuant is a multivariate polynomial representing the determinant of a tridiagonal matrix and having applications in generalized continued fractions.

Definition

The n-th continuant \( K_n(x_1,\;x_2,\;\ldots,\;x_n) \) is defined recursively by

\(K_0 = 1 ; \, \)
\( K_1(x_1) = x_1 ; \, \)
\( K_n(x_1,\;x_2,\;\ldots,\;x_n) = x_n K_{n-1}(x_1,\;x_2,\;\ldots,\;x_{n-1}) + K_{n-2}(x_1,\;x_2,\;\ldots,\;x_{n-2}) . \, \)

Properties

The continuant \( K_n(x_1,\;x_2,\;\ldots,\;x_n) \) can be computed by taking the sum of all possible products of x1,...,xn, in which any number of disjoint pairs of consecutive terms are deleted (Euler's rule). For example,

\( K_5(x_1,\;x_2,\;x_3,\;x_4,\;x_5) = x_1 x_2 x_3 x_4 x_5\; +\; x_3 x_4 x_5\; +\; x_1 x_4 x_5\; +\; x_1 x_2 x_5\; +\; x_1 x_2 x_3\; +\; x_1\; +\; x_3\; +\; x_5. \)

It follows that continuants are invariant with respect to reversing the order of indeterminates: \( K_n(x_1,\;\ldots,\;x_n) = K_n(x_n,\;\ldots,\;x_1). \)

The continuant can be computed as the determinant of a tridiagonal matrix:

\( K_n(x_1,\;x_2,\;\ldots,\;x_n)= \det \begin{pmatrix} x_1 & 1 & 0 &\cdots & 0 \\ -1 & x_2 & 1 & \ddots & \vdots\\ 0 & -1 & \ddots &\ddots & 0 \\ \vdots & \ddots & \ddots &\ddots & 1 \\ 0 & \cdots & 0 & -1 &x_n \end{pmatrix}. \)

\( K_n(1,\;\ldots,\;1) = F_{n+1}, \) the (n+1)-st Fibonacci number.
\( \frac{K_n(x_1,\;\ldots,\;x_n)}{K_{n-1}(x_2,\;\ldots,\;x_n)} = x_1 + \frac{K_{n-2}(x_3,\;\ldots,\;x_n)}{K_{n-1}(x_2,\;\ldots,\;x_n)}. \)
Ratios of continuants represent (convergents to) continued fractions as follows:

\( \frac{K_n(x_1,\;\ldots,x_n)}{K_{n-1}(x_2,\;\ldots,\;x_n)} = [x_1;\;x_2,\;\ldots,\;x_n] = x_1 + \frac{1}{\displaystyle{x_2 + \frac{1}{x_3 + \ldots}}}.

The following matrix identity holds:

\( \begin{pmatrix} K_n(x_1,\;\ldots,\;x_n) & K_{n-1}(x_1,\;\ldots,\;x_{n-1}) \\ K_{n-1}(x_2,\;\ldots,\;x_n) & K_{n-2}(x_2,\;\ldots,\;x_{n-1}) \end{pmatrix} = \begin{pmatrix} x_1 & 1 \\ 1 & 0 \end{pmatrix}\times\ldots\times\begin{pmatrix} x_n & 1 \\ 1 & 0 \end{pmatrix}. \)

For determinants, it implies that

\( K_n(x_1,\;\ldots,\;x_n)\cdot K_{n-2}(x_2,\;\ldots,\;x_{n-1}) - K_{n-1}(x_1,\;\ldots,\;x_{n-1})\cdot K_{n-1}(x_2,\;\ldots,\;x_{n}) = (-1)^n. \)

and also

\( K_{n-1}(x_2,\;\ldots,\;x_n)\cdot K_{n+2}(x_1,\;\ldots,\;x_{n+2}) - K_n(x_1,\;\ldots,\;x_n)\cdot K_{n+1}(x_2,\;\ldots,\;x_{n+2}) = (-1)^{n+1} x_{n+2}. \)

Generalizations

A generalized definition takes the continuant with respect to three sequences a, b and c, so that K(n) is a polynomial of a1,...,an, b1,...,bn−1 and c1,...,cn−1. In this case the recurrence relation becomes

\( K_0 = 1 ; \, \)
\( K_1 = a_1 ; \, \)
\( K_n = a_n K_{n-1} - b_{n-1}c_{n-1} K_{n-2} . \, \)

Since br and cr enter into K only as a product brcr there is no loss of generality in assuming that the br are all equal to 1.

The extended continuant is precisely the determinant of the tridiagonal matrix

\( {\begin{pmatrix}a_{1}&b_{1}&0&\ldots &0&0\\c_{1}&a_{2}&b_{2}&\ldots &0&0\\0&c_{2}&a_{3}&\ldots &0&0\\\vdots &\vdots &\vdots &\ddots &\vdots &\vdots \\0&0&0&\ldots &a_{{n-1}}&b_{{n-1}}\\0&0&0&\ldots &c_{{n-1}}&a_{n}\end{pmatrix}}. \)

In Muir's book the generalized continuant is simply called continuant.
References
Thomas Muir (1960). A treatise on the theory of determinants. Dover Publications. pp. 516–525.
Cusick, Thomas W.; Flahive, Mary E. (1989). The Markoff and Lagrange Spectra. Mathematical Surveys and Monographs. 30. Providence, RI: American Mathematical Society. p. 89. ISBN 0-8218-1531-8. Zbl 0685.10023.
George Chrystal (1999). Algebra, an Elementary Text-book for the Higher Classes of Secondary Schools and for Colleges: Pt. 1. American Mathematical Society. p. 500. ISBN 0-8218-1649-7.

Undergraduate Texts in Mathematics

Graduate Texts in Mathematics

Graduate Studies in Mathematics

Mathematics Encyclopedia

World

Index

Hellenica World - Scientific Library

Retrieved from "http://en.wikipedia.org/"
All text is available under the terms of the GNU Free Documentation License