The Cantor distribution is the probability distribution whose cumulative distribution function is the Cantor function.
This distribution has neither a probability density function nor a probability mass function, since although its cumulative distribution function is a continuous function, the distribution is not absolutely continuous with respect to Lebesgue measure, nor does it have any point-masses. It is thus neither a discrete nor an absolutely continuous probability distribution, nor is it a mixture of these. Rather it is an example of a singular distribution.
Its cumulative distribution function is continuous everywhere but horizontal almost everywhere, so is sometimes referred to as the Devil's staircase, although that term has a more general meaning.
Characterization
The support of the Cantor distribution is the Cantor set, itself the intersection of the (countably infinitely many) sets:
\( {\displaystyle {\begin{aligned}C_{0}={}&[0,1]\\[8pt]C_{1}={}&[0,1/3]\cup [2/3,1]\\[8pt]C_{2}={}&[0,1/9]\cup [2/9,1/3]\cup [2/3,7/9]\cup [8/9,1]\\[8pt]C_{3}={}&[0,1/27]\cup [2/27,1/9]\cup [2/9,7/27]\cup [8/27,1/3]\cup \\[4pt]{}&[2/3,19/27]\cup [20/27,7/9]\cup [8/9,25/27]\cup [26/27,1]\\[8pt]C_{4}={}&[0,1/81]\cup [2/81,1/27]\cup [2/27,7/81]\cup [8/81,1/9]\cup [2/9,19/81]\cup [20/81,7/27]\cup \\[4pt]&[8/27,25/81]\cup [26/81,1/3]\cup [2/3,55/81]\cup [56/81,19/27]\cup [20/27,61/81]\cup \\[4pt]&[62/81,21/27]\cup [8/9,73/81]\cup [74/81,25/27]\cup [26/27,79/81]\cup [80/81,1]\\[8pt]C_{5}={}&\cdots \end{aligned}}} \)
The Cantor distribution is the unique probability distribution for which for any Ct (t ∈ { 0, 1, 2, 3, ... }), the probability of a particular interval in Ct containing the Cantor-distributed random variable is identically 2−t on each one of the 2t intervals.
Moments
It is easy to see by symmetry that for a random variable X having this distribution, its expected value E(X) = 1/2, and that all odd central moments of X are 0.
The law of total variance can be used to find the variance var(X), as follows. For the above set C1, let Y = 0 if X ∈ [0,1/3], and 1 if X ∈ [2/3,1]. Then:
\( \begin{align} \operatorname{var}(X) & = \operatorname{E}(\operatorname{var}(X\mid Y)) + \operatorname{var}(\operatorname{E}(X\mid Y)) \\ & = \frac{1}{9}\operatorname{var}(X) + \operatorname{var} \left\{ \begin{matrix} 1/6 & \mbox{with probability}\ 1/2 \\ 5/6 & \mbox{with probability}\ 1/2 \end{matrix} \right\} \\ & = \frac{1}{9}\operatorname{var}(X) + \frac{1}{9} \end{align} \)
From this we get:
\( \operatorname{var}(X)=\frac{1}{8}. \)
A closed-form expression for any even central moment can be found by first obtaining the even cumulants[1]
\( \kappa_{2n} = \frac{2^{2n-1} (2^{2n}-1) B_{2n}} {n\, (3^{2n}-1)}, \,\! \)
where B2n is the 2nth Bernoulli number, and then expressing the moments as functions of the cumulants.
References
Morrison, Kent (1998-07-23). "Random Walks with Decreasing Steps" (PDF). Department of Mathematics, California Polytechnic State University. Retrieved 2007-02-16.
Further reading
Hewitt, E.; Stromberg, K. (1965). Real and Abstract Analysis. Berlin-Heidelberg-New York: Springer-Verlag. This, as with other standard texts, has the Cantor function and its one sided derivates.
Hu, Tian-You; Lau, Ka Sing (2002). "Fourier Asymptotics of Cantor Type Measures at Infinity". Proc. A.M.S. 130 (9). pp. 2711–2717. This is more modern than the other texts in this reference list.
Knill, O. (2006). Probability Theory & Stochastic Processes. India: Overseas Press.
Mattilla, P. (1995). Geometry of Sets in Euclidean Spaces. San Francisco: Cambridge University Press. This has more advanced material on fractals.
Undergraduate Texts in Mathematics
Graduate Studies in Mathematics
Hellenica World - Scientific Library
Retrieved from "http://en.wikipedia.org/"
All text is available under the terms of the GNU Free Documentation License