In fluid dynamics, the Camassa–Holm equation is the integrable, dimensionless and non-linear partial differential equation
\( u_{t}+2\kappa u_{x}-u_{{xxt}}+3uu_{x}=2u_{x}u_{{xx}}+uu_{{xxx}}.\, \)
The equation was introduced by Roberto Camassa and Darryl Holm[1] as a bi-Hamiltonian model for waves in shallow water, and in this context the parameter κ is positive and the solitary wave solutions are smooth solitons.
In the special case that κ is equal to zero, the Camassa–Holm equation has peakon solutions: solitons with a sharp peak, so with a discontinuity at the peak in the wave slope.
Relation to waves in shallow water
The Camassa–Holm equation can be written as the system of equations:[2]
\( {\begin{aligned}u_{t}+uu_{x}+p_{x}&=0,\\p-p_{{xx}}&=2\kappa u+u^{2}+{\frac {1}{2}}\left(u_{x}\right)^{2},\end{aligned}} \)
with p the (dimensionless) pressure or surface elevation. This shows that the Camassa–Holm equation is a model for shallow water waves with non-hydrostatic pressure and a water layer on a horizontal bed.
The linear dispersion characteristics of the Camassa–Holm equation are:
\( \omega =2\kappa {\frac {k}{1+k^{2}}}, \)
with ω the angular frequency and k the wavenumber. Not surprisingly, this is of similar form as the one for the Korteweg–de Vries equation, provided κ is non-zero. For κ equal to zero, the Camassa–Holm equation has no frequency dispersion — moreover, the linear phase speed is zero for this case. As a result, κ is the phase speed for the long-wave limit of k approaching zero, and the Camassa–Holm equation is (if κ is non-zero) a model for one-directional wave propagation like the Korteweg–de Vries equation.
Hamiltonian structure
Introducing the momentum m as
\( m=u-u_{{xx}}+\kappa ,\, \)
then two compatible Hamiltonian descriptions of the Camassa–Holm equation are:[3]
\( {\displaystyle {\begin{aligned}m_{t}&=-{\mathcal {D}}_{1}{\frac {\delta {\mathcal {H}}_{1}}{\delta m}}&&{\text{ with }}&{\mathcal {D}}_{1}&=m{\frac {\partial }{\partial x}}+{\frac {\partial }{\partial x}}m&{\text{ and }}{\mathcal {H}}_{1}&={\frac {1}{2}}\int u^{2}+\left(u_{x}\right)^{2}\;{\text{d}}x,\\m_{t}&=-{\mathcal {D}}_{2}{\frac {\delta {\mathcal {H}}_{2}}{\delta m}}&&{\text{ with }}&{\mathcal {D}}_{2}&={\frac {\partial }{\partial x}}+{\frac {\partial ^{3}}{\partial x^{3}}}&{\text{ and }}{\mathcal {H}}_{2}&={\frac {1}{2}}\int u^{3}+u\left(u_{x}\right)^{2}-\kappa u^{2}\;{\text{d}}x.\end{aligned}}} \)
Integrability
The Camassa–Holm equation is an integrable system. Integrability means that there is a change of variables (action-angle variables) such that the evolution equation in the new variables is equivalent to a linear flow at constant speed. This change of variables is achieved by studying an associated isospectral/scattering problem, and is reminiscent of the fact that integrable classical Hamiltonian systems are equivalent to linear flows at constant speed on tori. The Camassa–Holm equation is integrable provided that the momentum
\( m=u-u_{{xx}}+\kappa \, \)
is positive — see [4] and [5] for a detailed description of the spectrum associated to the isospectral problem,[4] for the inverse spectral problem in the case of spatially periodic smooth solutions, and [6] for the inverse scattering approach in the case of smooth solutions that decay at infinity.
Exact solutions
Traveling waves are solutions of the form
\( u(t,x)=f(x-ct)\, \)
representing waves of permanent shape f that propagate at constant speed c. These waves are called solitary waves if they are localized disturbances, that is, if the wave profile f decays at infinity. If the solitary waves retain their shape and speed after interacting with other waves of the same type, we say that the solitary waves are solitons. There is a close connection between integrability and solitons.[7] In the limiting case when κ = 0 the solitons become peaked (shaped like the graph of the function f(x) = e−|x|), and they are then called peakons. It is possible to provide explicit formulas for the peakon interactions, visualizing thus the fact that they are solitons.[8] For the smooth solitons the soliton interactions are less elegant.[9] This is due in part to the fact that, unlike the peakons, the smooth solitons are relatively easy to describe qualitatively — they are smooth, decaying exponentially fast at infinity, symmetric with respect to the crest, and with two inflection points[10] — but explicit formulas are not available. Notice also that the solitary waves are orbitally stable i.e. their shape is stable under small perturbations, both for the smooth solitons[10] and for the peakons.[11]
Wave breaking
The Camassa–Holm equation models breaking waves: a smooth initial profile with sufficient decay at infinity develops into either a wave that exists for all times or into a breaking wave (wave breaking[12] being characterized by the fact that the solution remains bounded but its slope becomes unbounded in finite time). The fact that the equations admits solutions of this type was discovered by Camassa and Holm[1] and these considerations were subsequently put on a firm mathematical basis.[13] It is known that the only way singularities can occur in solutions is in the form of breaking waves.[14] Moreover, from the knowledge of a smooth initial profile it is possible to predict (via a necessary and sufficient condition) whether wave breaking occurs or not.[15] As for the continuation of solutions after wave breaking, two scenarios are possible: the conservative case[16] and the dissipative case[17] (with the first characterized by conservation of the energy, while the dissipative scenario accounts for loss of energy due to breaking).
Long-time asymptotics
It can be shown that for sufficiently fast decaying smooth initial conditions with positive momentum splits into a finite number and solitons plus a decaying dispersive part. More precisely, one can show the following for \( \kappa >0 \) :[18] Abbreviate \( c=x/(\kappa t) \). In the soliton region c>2 the solutions splits into a finite linear combination solitons. In the region 0<c<2 the solution is asymptotically given by a modulated sine function whose amplitude decays like \( t^{{-1/2}} \). In the region \( -1/4<c<0 \) the solution is asymptotically given by a sum of two modulated sine function as in the previous case. In the region \( c<-1/4 \) the solution decays rapidly. In the case \( \kappa =0 \) the solution splits into an infinite linear combination of peakons[19] (as previously conjectured[20]).
See also
Degasperis–Procesi equation
Hunter–Saxton equation
Notes
Camassa & Holm 1993
Loubet 2005
Boldea 1995
Constantin & McKean 1999
Constantin 2001
Constantin, Gerdjikov & Ivanov 2006
Drazin, P. G.; Johnson, R. S. (1989), Solitons: an introduction, Cambridge University Press, Cambridge
Beals, Sattinger & Szmigielski 1999
Parker 2005b
Constantin & Strauss 2002
Constantin & Strauss 2000
Whitham, G. B. (1974), Linear and nonlinear waves, Wiley Interscience, New York–London–Sydney
Constantin & Escher 1998b
Constantin 2000, Constantin & Escher 2000
McKean 2004
Bressan & Constantin 2007a
Bressan & Constantin 2007b
Boutet de Monvel et al. 2009
Eckhardt & Teschl 2013
McKean 2003a
References
Beals, Richard; Sattinger, David H.; Szmigielski, Jacek (1999), "Multi-peakons and a theorem of Stieltjes", Inverse Problems, 15 (1), pp. L1–L4, arXiv:solv-int/9903011, Bibcode:1999InvPr..15L...1B, CiteSeerX 10.1.1.251.3369, doi:10.1088/0266-5611/15/1/001
Boldea, Costin-Radu (1995), "A generalization for peakon's solitary wave and Camassa–Holm equation", General Mathematics, 5 (1–4), pp. 33–42
Boutet de Monvel, Anne; Kostenko, Aleksey; Shepelsky, Dmitry; Teschl, Gerald (2009), "Long-Time Asymptotics for the Camassa–Holm Equation", SIAM J. Math. Anal., 41 (4), pp. 1559–1588, arXiv:0902.0391, doi:10.1137/090748500
Bressan, Alberto; Constantin, Adrian (2007a), "Global conservative solutions of the Camassa–Holm equation", Arch. Ration. Mech. Anal., 183 (2), pp. 215–239, Bibcode:2007ArRMA.183..215B, CiteSeerX 10.1.1.229.3821, doi:10.1007/s00205-006-0010-z
Bressan, Alberto; Constantin, Adrian (2007b), "Global dissipative solutions of the Camassa–Holm equation", Anal. Appl., 5, pp. 1–27, CiteSeerX 10.1.1.230.3221, doi:10.1142/S0219530507000857
Camassa, Roberto; Holm, Darryl D. (1993), "An integrable shallow water equation with peaked solitons", Phys. Rev. Lett., 71 (11), pp. 1661–1664, arXiv:patt-sol/9305002, Bibcode:1993PhRvL..71.1661C, doi:10.1103/PhysRevLett.71.1661, PMID 10054466
Constantin, Adrian (2000), "Existence of permanent and breaking waves for a shallow water equation: a geometric approach", Annales de l'Institut Fourier, 50 (2), pp. 321–362, doi:10.5802/aif.1757
Constantin, Adrian (2001), "On the scattering problem for the Camassa–Holm equation", R. Soc. Lond. Proc. Ser. A Math. Phys. Eng. Sci., 457 (2008), pp. 953–970, Bibcode:2001RSPSA.457..953C, doi:10.1098/rspa.2000.0701
Constantin, Adrian; Escher, Joachim (1998b), "Wave breaking for nonlinear nonlocal shallow water equations", Acta Math., 181 (2), pp. 229–243, doi:10.1007/BF02392586
Constantin, Adrian; Escher, Joachim (2000), "On the blow-up rate and the blow-up set of breaking waves for a shallow water equation", Math. Z., 233 (1), pp. 75–91, doi:10.1007/PL00004793
Constantin, Adrian; McKean, Henry P. (1999), "A shallow water equation on the circle", Commun. Pure Appl. Math., 52 (8), pp. 949–982, doi:10.1002/(SICI)1097-0312(199908)52:8<949::AID-CPA3>3.0.CO;2-D
Constantin, Adrian; Strauss, Walter A. (2000), "Stability of peakons", Comm. Pure Appl. Math., 53 (5): 603–610, doi:10.1002/(SICI)1097-0312(200005)53:5<603::AID-CPA3>3.0.CO;2-L
Constantin, Adrian; Strauss, Walter A. (2002), "Stability of the Camassa–Holm solitons", J. Nonlinear Sci., 12 (4): 415–422, Bibcode:2002JNS....12..415C, doi:10.1007/s00332-002-0517-x
Constantin, Adrian; Gerdjikov, Vladimir S.; Ivanov, Rossen I. (2006), "Inverse scattering transform for the Camassa–Holm equation", Inverse Problems, 22 (6), pp. 2197–2207, arXiv:nlin/0603019, Bibcode:2006InvPr..22.2197C, doi:10.1088/0266-5611/22/6/017
Eckhardt, Jonathan; Teschl, Gerald (2013), "On the isospectral problem of the dispersionless Camassa-Holm equation", Adv. Math., 235 (1), pp. 469–495, arXiv:1205.5831, doi:10.1016/j.aim.2012.12.006
Loubet, Enrique (2005), "About the explicit characterization of Hamiltonians of the Camassa–Holm hierarchy" (PDF), J. Nonlinear Math. Phys., 12 (1), pp. 135–143, Bibcode:2005JNMP...12..135L, doi:10.2991/jnmp.2005.12.1.11
McKean, Henry P. (2003a), "Fredholm determinants and the Camassa–Holm hierarchy", Comm. Pure Appl. Math., 56 (5), pp. 638–680, doi:10.1002/cpa.10069
McKean, Henry P. (2004), "Breakdown of the Camassa–Holm equation", Comm. Pure Appl. Math., 57 (3), pp. 416–418, doi:10.1002/cpa.20003
Parker, Allen (2005b), "On the Camassa–Holm equation and a direct method of solution. III. N-soliton solutions", Proc. R. Soc. Lond. Ser. A Math. Phys. Eng. Sci., 461 (2064), pp. 3893–3911, Bibcode:2005RSPSA.461.3893P, doi:10.1098/rspa.2005.1537
Liao, S.J. (2013), "Do peaked solitary water waves indeed exist?", Communications in Nonlinear Science and Numerical Simulation, 19 (6): 1792–1821, arXiv:1204.3354, Bibcode:2014CNSNS..19.1792L, CiteSeerX 10.1.1.747.8302, doi:10.1016/j.cnsns.2013.09.042
Further reading
Introductions to the subject
Peakon solutions
Beals, Richard; Sattinger, David H.; Szmigielski, Jacek (2000), "Multipeakons and the classical moment problem", Adv. Math., 154 (2), pp. 229–257, arXiv:solv-int/9906001, doi:10.1006/aima.1999.1883
Water wave theory
Constantin, Adrian; Lannes, David (2007), "The hydrodynamical relevance of the Camassa–Holm and Degasperis–Procesi equations", Archive for Rational Mechanics and Analysis, 192 (1): 165–186, arXiv:0709.0905, Bibcode:2009ArRMA.192..165C, doi:10.1007/s00205-008-0128-2
Johnson, Robin S. (2003b), "The classical problem of water waves: a reservoir of integrable and nearly-integrable equations", J. Nonlinear Math. Phys., 10 (suppl. 1), pp. 72–92, Bibcode:2003JNMP...10S..72J, doi:10.2991/jnmp.2003.10.s1.6
Existence, uniqueness, wellposedness, stability, propagation speed, etc.
Bressan, Alberto; Constantin, Adrian (2007a), "Global conservative solutions of the Camassa–Holm equation", Arch. Ration. Mech. Anal., 183 (2), pp. 215–239, Bibcode:2007ArRMA.183..215B, CiteSeerX 10.1.1.229.3821, doi:10.1007/s00205-006-0010-z
Constantin, Adrian; Strauss, Walter A. (2000), "Stability of peakons", Comm. Pure Appl. Math., 53 (5): 603–610, doi:10.1002/(SICI)1097-0312(200005)53:5<603::AID-CPA3>3.0.CO;2-L
Holden, Helge; Raynaud, Xavier (2007a), "Global conservative multipeakon solutions of the Camassa–Holm equation", J. Hyperbolic Differ. Equ., 4 (1), pp. 39–64, doi:10.1142/S0219891607001045
McKean, Henry P. (2004), "Breakdown of the Camassa–Holm equation", Comm. Pure Appl. Math., 57 (3), pp. 416–418, doi:10.1002/cpa.20003
Travelling waves
Lenells, Jonatan (2005c), "Traveling wave solutions of the Camassa–Holm equation", J. Differential Equations, 217 (2), pp. 393–430, Bibcode:2005JDE...217..393L, doi:10.1016/j.jde.2004.09.007
Integrability structure (symmetries, hierarchy of soliton equations, conservations laws) and differential-geometric formulation
Fuchssteiner, Benno (1996), "Some tricks from the symmetry-toolbox for nonlinear equations: generalizations of the Camassa–Holm equation", Physica D, 95 (3–4), pp. 229–243, Bibcode:1996PhyD...95..229F, doi:10.1016/0167-2789(96)00048-6
Lenells, Jonatan (2005a), "Conservation laws of the Camassa–Holm equation", J. Phys. A, 38 (4), pp. 869–880, Bibcode:2005JPhA...38..869L, doi:10.1088/0305-4470/38/4/007
McKean, Henry P. (2003b), "The Liouville correspondence between the Korteweg–de Vries and the Camassa–Holm hierarchies", Comm. Pure Appl. Math., 56 (7), pp. 998–1015, doi:10.1002/cpa.10083
Misiołek, Gerard (1998), "A shallow water equation as a geodesic flow on the Bott–Virasoro group", J. Geom. Phys., 24 (3), pp. 203–208, Bibcode:1998JGP....24..203M, doi:10.1016/S0393-0440(97)00010-7
Others
Abenda, Simonetta; Grava, Tamara (2005), "Modulation of Camassa–Holm equation and reciprocal transformations", Annales de l'Institut Fourier, 55 (6), pp. 1803–1834, arXiv:math-ph/0506042, Bibcode:2005math.ph...6042A, doi:10.5802/aif.2142
Alber, Mark S.; Camassa, Roberto; Holm, Darryl D.; Marsden, Jerrold E. (1994), "The geometry of peaked solitons and billiard solutions of a class of integrable PDEs", Lett. Math. Phys., 32 (2), pp. 137–151, Bibcode:1994LMaPh..32..137A, CiteSeerX 10.1.1.111.2327, doi:10.1007/BF00739423
Alber, Mark S.; Camassa, Roberto; Holm, Darryl D.; Fedorov, Yuri N.; Marsden, Jerrold E. (2001), "The complex geometry of weak piecewise smooth solutions of integrable nonlinear PDE's of shallow water and Dym type", Comm. Math. Phys., 221 (1), pp. 197–227, arXiv:nlin/0105025, Bibcode:2001CMaPh.221..197A, doi:10.1007/PL00005573
Artebrant, Robert; Schroll, Hans Joachim (2006), "Numerical simulation of Camassa–Holm peakons by adaptive upwinding", Applied Numerical Mathematics, 56 (5), pp. 695–711, doi:10.1016/j.apnum.2005.06.002
Beals, Richard; Sattinger, David H.; Szmigielski, Jacek (2005), "Periodic peakons and Calogero–Françoise flows", J. Inst. Math. Jussieu, 4 (1), pp. 1–27, doi:10.1017/S1474748005000010
Boutet de Monvel, Anne; Shepelsky, Dmitry (2005), "The Camassa–Holm equation on the half-line", C. R. Math. Acad. Sci. Paris, 341 (10), pp. 611–616, doi:10.1016/j.crma.2005.09.035
Boutet de Monvel, Anne; Shepelsky, Dmitry (2006), "Riemann–Hilbert approach for the Camassa–Holm equation on the line", C. R. Math. Acad. Sci. Paris, 343 (10), pp. 627–632, doi:10.1016/j.crma.2006.10.014
Boyd, John P. (2005), "Near-corner waves of the Camassa–Holm equation", Physics Letters A, 336 (4–5), pp. 342–348, Bibcode:2005PhLA..336..342B, doi:10.1016/j.physleta.2004.12.055
Byers, Peter (2006), "Existence time for the Camassa–Holm equation and the critical Sobolev index", Indiana Univ. Math. J., 55 (3), pp. 941–954, doi:10.1512/iumj.2006.55.2710
Camassa, Roberto (2003), "Characteristics and the initial value problem of a completely integrable shallow water equation", Discrete Contin. Dyn. Syst. Ser. B, 3 (1), pp. 115–139, doi:10.3934/dcdsb.2003.3.115
Camassa, Roberto; Holm, Darryl D.; Hyman, J. M. (1994), "Advances in Applied Mechanics Volume 31", Adv. Appl. Mech., Advances in Applied Mechanics, 31, pp. 1–33, doi:10.1016/S0065-2156(08)70254-0, ISBN 9780120020317
Camassa, Roberto; Huang, Jingfang; Lee, Long (2005), "On a completely integrable numerical scheme for a nonlinear shallow-water wave equation", J. Nonlinear Math. Phys., 12 (suppl. 1), pp. 146–162, Bibcode:2005JNMP...12S.146C, CiteSeerX 10.1.1.596.3529, doi:10.2991/jnmp.2005.12.s1.13
Camassa, Roberto; Huang, Jingfang; Lee, Long (2006), "Integral and integrable algorithms for a nonlinear shallow-water wave equation", J. Comput. Phys., 216 (2), pp. 547–572, Bibcode:2006JCoPh.216..547C, doi:10.1016/j.jcp.2005.12.013
Casati, Paolo; Lorenzoni, Paolo; Ortenzi, Giovanni; Pedroni, Marco (2005), "On the local and nonlocal Camassa–Holm hierarchies", J. Math. Phys., 46 (4), pp. 042704, 8 pp, Bibcode:2005JMP....46d2704C, doi:10.1063/1.1888568
Coclite, Giuseppe Maria; Karlsen, Kenneth Hvistendahl (2006), "A singular limit problem for conservation laws related to the Camassa–Holm shallow water equation", Comm. Partial Differential Equations, 31 (7–9), pp. 1253–1272, CiteSeerX 10.1.1.144.9138, doi:10.1080/03605300600781600
Coclite, Giuseppe Maria; Karlsen, Kenneth Hvistendahl; Risebro, Nils Henrik (2008a), "A convergent finite difference scheme for the Camassa–Holm equation with general H1 initial data", SIAM J. Numer. Anal., 46 (3), pp. 1554–1579, doi:10.1137/060673242, hdl:10852/10545
Coclite, Giuseppe Maria; Karlsen, Kenneth Hvistendahl; Risebro, Nils Henrik (2008b), An explicit finite difference scheme for the Camassa–Holm equation, arXiv:0802.3129
Cohen, David; Owren, Brynjulf; Raynaud, Xavier (2008), "Multi-symplectic integration of the Camassa–Holm equation", Journal of Computational Physics, 227 (11), pp. 5492–5512, Bibcode:2008JCoPh.227.5492C, CiteSeerX 10.1.1.183.7078, doi:10.1016/j.jcp.2008.01.051
Constantin, Adrian (1997), "The Hamiltonian structure of the Camassa–Holm equation", Exposition. Math., 15 (1), pp. 53–85
Constantin, Adrian (1998), "On the inverse spectral problem for the Camassa–Holm equation", J. Funct. Anal., 155 (2), pp. 352–363, doi:10.1006/jfan.1997.3231
Constantin, Adrian (2005), "Finite propagation speed for the Camassa–Holm equation", J. Math. Phys., 46 (2), pp. 023506, 4 pp, Bibcode:2005JMP....46b3506C, doi:10.1063/1.1845603
Constantin, Adrian; Escher, Joachim (1998a), "Global existence and blow-up for a shallow water equation", Ann. Scuola Norm. Sup. Pisa Cl. Sci., 26 (2), pp. 303–328
Constantin, Adrian; Escher, Joachim (1998c), "Well-posedness, global existence, and blowup phenomena for a periodic quasi-linear hyperbolic equation", Comm. Pure Appl. Math., 51 (5), pp. 475–504, doi:10.1002/(SICI)1097-0312(199805)51:5<475::AID-CPA2>3.0.CO;2-5
Constantin, Adrian; Gerdjikov, Vladimir S.; Ivanov, Rossen I. (2007), "Generalized Fourier transform for the Camassa–Holm hierarchy", Inverse Problems, 23 (4), pp. 1565–1597, arXiv:0707.2048, Bibcode:2007InvPr..23.1565C, doi:10.1088/0266-5611/23/4/012
Constantin, Adrian; Ivanov, Rossen (2006), "Poisson structure and action-angle variables for the Camassa–Holm equation", Lett. Math. Phys., 76 (1), pp. 93–108, arXiv:nlin/0602049, Bibcode:2006LMaPh..76...93C, doi:10.1007/s11005-006-0063-9
Constantin, Adrian; Kolev, Boris (2003), "Geodesic flow on the diffeomorphism group of the circle", Comment. Math. Helv., 78 (4), pp. 787–804, arXiv:math/0208076, doi:10.1007/s00014-003-0785-6
Constantin, Adrian; Molinet, Luc (2000), "Global weak solutions for a shallow water equation", Comm. Math. Phys., 211 (1), pp. 45–61, Bibcode:2000CMaPh.211...45C, doi:10.1007/s002200050801
Constantin, Adrian; Molinet, Luc (2001), "Orbital stability of solitary waves for a shallow water equation", Phys. D, 157 (1–2), pp. 75–89, Bibcode:2001PhyD..157...75C, doi:10.1016/S0167-2789(01)00298-6
Dai, Hui-Hui (1998), "Model equations for nonlinear dispersive waves in a compressible Mooney–Rivlin rod", Acta Mech., 127 (1–4), pp. 193–207, doi:10.1007/BF01170373
Dai, Hui-Hui; Pavlov, Maxim (1998), "Transformations for the Camassa–Holm equation, its high-frequency limit and the sinh-Gordon equation", J. Phys. Soc. Jpn., 67 (11), pp. 3655–3657, Bibcode:1998JPSJ...67.3655D, doi:10.1143/JPSJ.67.3655
Danchin, Raphaël (2001), "A few remarks on the Camassa–Holm equation", Differential Integral Equations, 14 (8), pp. 953–988
Danchin, Raphaël (2003), "A note on well-posedness for Camassa–Holm equation", J. Differential Equations, 192 (2), pp. 429–444, Bibcode:2003JDE...192..429D, doi:10.1016/S0022-0396(03)00096-2
Escher, Joachim; Yin, Zhaoyang (2008), "Initial boundary value problems of the Camassa–Holm equation", Comm. Partial Differential Equations, 33 (1–3), pp. 377–395, doi:10.1080/03605300701318872
Fisher, Michael; Schiff, Jeremy (1999), "The Camassa–Holm equation: conserved quantities and the initial value problem", Phys. Lett. A, 259 (5), pp. 371–376, arXiv:solv-int/9901001, Bibcode:1999PhLA..259..371F, doi:10.1016/S0375-9601(99)00466-1
Fuchssteiner, Benno (1981), "The Lie algebra structure of nonlinear evolution equations admitting infinite-dimensional abelian symmetry groups", Progr. Theoret. Phys., 65 (3), pp. 861–876, Bibcode:1981PThPh..65..861F, doi:10.1143/PTP.65.861
Fuchssteiner, Benno; Fokas, Athanassios S. (1981–82), "Symplectic structures, their Bäcklund transformations and hereditary symmetries", Physica D, 4 (1), pp. 47–66, Bibcode:1981PhyD....4...47F, doi:10.1016/0167-2789(81)90004-X
Gesztesy, Fritz; Holden, Helge (2003), "Algebro-geometric solutions of the Camassa–Holm hierarchy", Rev. Mat. Iberoamericana, 19 (1), pp. 73–142
Golovko, V.; Kersten, P.; Krasil'shchik, I.; Verbovetsky, A. (2008), "On integrability of the Camassa–Holm equation and its invariants: a geometrical approach", Acta Appl. Math., 101 (1–3), pp. 59–83, arXiv:0812.4681, doi:10.1007/s10440-008-9200-z
Himonas, A. Alexandrou; Misiołek, Gerard (2001), "The Cauchy problem for an integrable shallow-water equation", Differential and Integral Equations, 14 (7), pp. 821–831
Himonas, A. Alexandrou; Misiołek, Gerard (2005), "High-frequency smooth solutions and well-posedness of the Camassa–Holm equation", Int. Math. Res. Not., 2005 (51), pp. 3135–3151, doi:10.1155/IMRN.2005.3135
Himonas, A. Alexandrou; Misiołek, Gerard; Ponce, Gustavo; Zhou, Yong (2007), "Persistence properties and unique continuation of solutions of the Camassa–Holm equation", Comm. Math. Phys., 271 (2), pp. 511–522, arXiv:math/0604192, Bibcode:2007CMaPh.271..511H, doi:10.1007/s00220-006-0172-4
Holden, Helge; Raynaud, Xavier (2006a), "A convergent numerical scheme for the Camassa–Holm equation based on multipeakons", Discrete Contin. Dyn. Syst., 14 (3), pp. 505–523, doi:10.3934/dcds.2006.14.505
Holden, Helge; Raynaud, Xavier (2006b), "Convergence of a finite difference scheme for the Camassa–Holm equation", SIAM J. Numer. Anal., 44 (4), pp. 1655–1680, CiteSeerX 10.1.1.183.7171, doi:10.1137/040611975
Holden, Helge; Raynaud, Xavier (2008a), "Periodic conservative solutions of the Camassa–Holm equation", Annales de l'Institut Fourier, 58 (3), pp. 945–988, doi:10.5802/aif.2375
Holden, Helge; Raynaud, Xavier (2007b), "Global conservative solutions of the Camassa–Holm equation—a Lagrangian point of view", Communications in Partial Differential Equations, 32 (10–12), pp. 1511–1549, CiteSeerX 10.1.1.756.3380, doi:10.1080/03605300601088674
Holden, Helge; Raynaud, Xavier (2008), Dissipative solutions for the Camassa–Holm equation
Hwang, Seok (2007), "Singular limit problem of the Camassa–Holm type equation", Journal of Differential Equations, 235 (1), pp. 74–84, Bibcode:2007JDE...235...74H, doi:10.1016/j.jde.2006.12.011
Ionescu-Kruse, Delia (2007), "Variational derivation of the Camassa–Holm shallow water equation with non-zero vorticity", Discrete Contin. Dyn. Syst., 19 (3), pp. 531–543, arXiv:0711.4701, Bibcode:2007arXiv0711.4701I, doi:10.3934/dcds.2007.19.531, archived from the original on 2016-03-03, retrieved 2009-02-19
Johnson, Robin S. (2002), "Camassa–Holm, Korteweg–de Vries and related models for water waves", J. Fluid Mech., 455 (1), pp. 63–82, Bibcode:2002JFM...455...63J, doi:10.1017/S0022112001007224
Johnson, Robin S. (2003a), "The Camassa–Holm equation for water waves moving over a shear flow", Fluid Dynam. Res., 33 (1–2), pp. 97–111, Bibcode:2003FlDyR..33...97J, doi:10.1016/S0169-5983(03)00036-4
Johnson, Robin S. (2003c), "On solutions of the Camassa–Holm equation", R. Soc. Lond. Proc. Ser. A Math. Phys. Eng. Sci., 459 (2035), pp. 1687–1708, Bibcode:2003RSPSA.459.1687J, doi:10.1098/rspa.2002.1078
Kaup, D. J. (2006), "Evolution of the scattering coefficients of the Camassa–Holm equation, for general initial data", Stud. Appl. Math., 117 (2), pp. 149–164, CiteSeerX 10.1.1.490.130, doi:10.1111/j.1467-9590.2006.00350.x
Khesin, Boris; Misiołek, Gerard (2003), "Euler equations on homogeneous spaces and Virasoro orbits", Advances in Mathematics, 176 (1), pp. 116–144, arXiv:math/0210397, doi:10.1016/S0001-8708(02)00063-4
de Lellis, Camillo; Kappeler, Thomas; Topalov, Peter (2007), "Low-regularity solutions of the periodic Camassa–Holm equation", Communications in Partial Differential Equations, 32 (1–3), pp. 87–126, CiteSeerX 10.1.1.571.8567, doi:10.1080/03605300601091470
Lenells, Jonatan (2004), "A variational approach to the stability of periodic peakons", J. Nonlinear Math. Phys., 11 (2), pp. 151–163, Bibcode:2004JNMP...11..151L, doi:10.2991/jnmp.2004.11.2.2
Lenells, Jonatan (2004), "Stability of periodic peakons", International Mathematics Research Notices, 2004 (10), pp. 485–499, doi:10.1155/S1073792804132431
Lenells, Jonatan (2004), "The correspondence between KdV and Camassa–Holm", International Mathematics Research Notices, 2004 (71), pp. 3797–3811, doi:10.1155/S1073792804142451
Lenells, Jonatan (2005), "Stability for the periodic Camassa–Holm equation", Mathematica Scandinavica, 97 (2), pp. 188–200, doi:10.7146/math.scand.a-14971, archived from the original on 2008-12-22, retrieved 2009-02-19
Lenells, Jonatan (2007), "Infinite propagation speed of the Camassa–Holm equation", J. Math. Anal. Appl., 325 (2), pp. 1468–1478, doi:10.1016/j.jmaa.2006.02.045
Li, Luen-Chau (2008), "Factorization problem on the Hilbert–Schmidt group and the Camassa–Holm equation", Comm. Pure Appl. Math., 61 (2), pp. 186–209, arXiv:math/0601156, doi:10.1002/cpa.20207
Lombardo, Maria Carmela; Sammartino, Marco; Sciacca, Vincenzo (2005), "A note on the analytic solutions of the Camassa–Holm equation", C. R. Math. Acad. Sci. Paris, 341 (11), pp. 659–664, doi:10.1016/j.crma.2005.10.006
Loubet, Enrique (2006), "Genesis of solitons arising from individual flows of the Camassa–Holm hierarchy", Comm. Pure Appl. Math., 59 (3), pp. 408–465, doi:10.1002/cpa.20109
Misiołek, Gerard (2005), "Classical solutions of the periodic Camassa–Holm equation", Geometric and Functional Analysis, 12 (5), pp. 1080–1104, doi:10.1007/PL00012648
Olver, Peter J.; Rosenau, Philip (1996), "Tri-Hamiltonian duality between solitons and solitary-wave solutions having compact support", Phys. Rev. E, 53 (2), pp. 1900–1906, Bibcode:1996PhRvE..53.1900O, doi:10.1103/PhysRevE.53.1900
Ortenzi, Giovanni; Pedroni, Marco; Rubtsov, Vladimir (2008), "On the higher Poisson structures of the Camassa–Holm hierarchy", Acta Appl. Math., 101 (1–3), pp. 243–254, doi:10.1007/s10440-008-9188-4, hdl:10446/554
Parker, Allen (2004), "On the Camassa–Holm equation and a direct method of solution. I. Bilinear form and solitary waves", Proc. R. Soc. Lond. Ser. A Math. Phys. Eng. Sci., 460 (2050), pp. 2929–2957, Bibcode:2004RSPSA.460.2929P, doi:10.1098/rspa.2004.1301
Parker, Allen (2005), "On the Camassa–Holm equation and a direct method of solution. II. Soliton solutions", Proc. R. Soc. Lond. Ser. A Math. Phys. Eng. Sci., 461 (2063), pp. 3611–3632, Bibcode:2005RSPSA.461.3611P, doi:10.1098/rspa.2005.1536
Parker, Allen (2006), "A factorization procedure for solving the Camassa–Holm equation", Inverse Problems, 22 (2), pp. 599–609, Bibcode:2006InvPr..22..599P, doi:10.1088/0266-5611/22/2/013
Parker, Allen (2007), "Cusped solitons of the Camassa–Holm equation. I. Cuspon solitary wave and antipeakon limit", Chaos, Solitons & Fractals, 34 (3), pp. 730–739, Bibcode:2007CSF....34..730P, doi:10.1016/j.chaos.2007.01.033
Parker, Allen (2008), "Wave dynamics for peaked solitons of the Camassa–Holm equation", Chaos, Solitons & Fractals, 35 (2), pp. 220–237, Bibcode:2008CSF....35..220P, doi:10.1016/j.chaos.2007.07.049
Qiao, Zhijun (2003), "The Camassa–Holm hierarchy, N-dimensional integrable systems, and algebro-geometric solution on a symplectic submanifold", Communications in Mathematical Physics, 239 (1–2), pp. 309–341, Bibcode:2003CMaPh.239..309Q, doi:10.1007/s00220-003-0880-y
Reyes, Enrique G. (2002), "Geometric integrability of the Camassa–Holm equation", Lett. Math. Phys., 59 (2), pp. 117–131, doi:10.1023/A:1014933316169
Rodríguez-Blanco, Guillermo (2001), "On the Cauchy problem for the Camassa–Holm equation", Nonlinear Analysis, 46 (3), pp. 309–327, doi:10.1016/S0362-546X(01)00791-X
Schiff, Jeremy (1998), "The Camassa–Holm equation: a loop group approach", Physica D, 121 (1–2), pp. 24–43, arXiv:solv-int/9709010, Bibcode:1998PhyD..121...24S, doi:10.1016/S0167-2789(98)00099-2
Vaninsky, K. L. (2005), "Equations of Camassa–Holm type and Jacobi ellipsoidal coordinates", Communications on Pure and Applied Mathematics, 58 (9), pp. 1149–1187, arXiv:math-ph/0303063, CiteSeerX 10.1.1.340.9314, doi:10.1002/cpa.20089
Wahlén, Erik (2005), "A blow-up result for the periodic Camassa–Holm equation", Archiv der Mathematik, 84 (4), pp. 334–340, doi:10.1007/s00013-004-1199-4
Wahlén, Erik (2006), "Global existence of weak solutions to the Camassa–Holm equation", Int. Math. Res. Not., 2006, pp. Art. ID 28976, 12 pp, doi:10.1155/IMRN/2006/28976
Wu, Shuyin; Yin, Zhaoyang (2006), "Blow-up, blow-up rate and decay of the solution of the weakly dissipative Camassa–Holm equation", J. Math. Phys., 47 (1), pp. 013504, 12 pp, Bibcode:2006JMP....47a3504W, doi:10.1063/1.2158437
Xin, Zhouping; Zhang, Ping (2002), "On the uniqueness and large time behavior of the weak solutions to a shallow water equation", Comm. Partial Differential Equations, 27 (9–10), pp. 1815–1844, doi:10.1081/PDE-120016129
Zampogni, Luca (2007), "On algebro-geometric solutions of the Camassa–Holm hierarchy", Adv. Nonlinear Stud., 7 (3), pp. 345–380, doi:10.1515/ans-2007-0303
Undergraduate Texts in Mathematics
Graduate Studies in Mathematics
Hellenica World - Scientific Library
Retrieved from "http://en.wikipedia.org/"
All text is available under the terms of the GNU Free Documentation License