ART

In mathematics, a Brieskorn manifold or Brieskorn–Phạm manifold, introduced by Egbert Brieskorn (1966, 1966b), is the intersection of a small sphere around the origin with the singular hypersurface

\( x_{1}^{{k_{1}}}+\cdots +x_{n}^{{k_{n}}}=0 \)

studied by Frédéric Pham (1965).

Brieskorn manifolds give examples of exotic spheres.
References
Brieskorn, Egbert V. (1966), "Examples of singular normal complex spaces which are topological manifolds", Proceedings of the National Academy of Sciences, 55 (6): 1395–1397, doi:10.1073/pnas.55.6.1395, MR 0198497, PMC 224331, PMID 16578636
Brieskorn, Egbert (1966b), "Beispiele zur Differentialtopologie von Singularitäten", Inventiones Mathematicae, 2 (1): 1–14, doi:10.1007/BF01403388, MR 0206972
Hirzebruch, Friedrich; Mayer, Karl Heinz (1968), O(n)-Mannigfaligkeiten, Exotische Sphären und Singularitäten, Lecture Notes in Mathematics, 57, Berlin-New York: Springer-Verlag, doi:10.1007/BFb0074355, MR 0229251 This book describes Brieskorn's work relating exotic spheres to singularities of complex manifolds.
Pham, Frédéric (1965), "Formules de Picard-Lefschetz généralisées et ramification des intégrales", Bulletin de la Société Mathématique de France, 93: 333–367, ISSN 0037-9484, MR 0195868

Undergraduate Texts in Mathematics

Graduate Texts in Mathematics

Graduate Studies in Mathematics

Mathematics Encyclopedia

World

Index

Hellenica World - Scientific Library

Retrieved from "http://en.wikipedia.org/"
All text is available under the terms of the GNU Free Documentation License