ART

The Beraha constants are a series of mathematical constants by which the n th Beraha constant is given by

\( {\displaystyle B(n)=2+2\cos \left({\frac {2\pi }{n}}\right).} \)

Notable examples of Beraha constants include \( {\displaystyle B(5)} \) is \( {\displaystyle \varphi +1} \), where \( \varphi \) is the golden ratio,\( {\displaystyle B(7)} \) is the silver constant[1] (also known as the silver root),[2] and \( {\displaystyle B(10)=\varphi +2} \).

The following table summarizes the first ten Beraha constants.

n {\displaystyle B(n)} \) Approximately
1 4
2 0
3 1
4 2
5 {\displaystyle {\frac {1}{2}}(3+{\sqrt {5}})} \) 2.618
6 3
7 \( {\displaystyle 2+2\cos({\tfrac {2}{7}}\pi )} \) > 3.247
8 \( {\displaystyle 2+{\sqrt {2}}} \) 3.414
9 \( {\displaystyle 2+2\cos({\tfrac {2}{9}}\pi )} \) 3.532
10 \( {\displaystyle {\frac {1}{2}}(5+{\sqrt {5}})} \) 3.618

See also

Chromatic polynomial

Notes

Weisstein, Eric W. "Silver Constant". Wolfram MathWorld. Retrieved November 3, 2018.

Weisstein, Eric W. "Silver Root". Wolfram MathWorld. Retrieved May 5, 2020.

References

Weisstein, Eric W. "Beraha Constants". Wolfram MathWorld. Retrieved November 3, 2018.
Beraha, S. Ph.D. thesis. Baltimore, MD: Johns Hopkins University, 1974.
Le Lionnais, F. Les nombres remarquables. Paris: Hermann, p. 143, 1983.
Saaty, T. L. and Kainen, P. C. The Four-Color Problem: Assaults and Conquest. New York: Dover, pp. 160-163, 1986.
Tutte, W. T. "Chromials." University of Waterloo, 1971.
Tutte, W. T. "More about Chromatic Polynomials and the Golden Ratio." In Combinatorial Structures and their Applications: Proc. Calgary Internat. Conf., Calgary, Alberta, 1969. New York: Gordon and Breach, p. 439, 1969.
Tutte, W. T. "Chromatic Sums for Planar Triangulations I: The Case λ = 1 1," Research Report COPR 72-7, University of Waterloo, 1972a.
Tutte, W. T. "Chromatic Sums for Planar Triangulations IV: The Case λ = ∞ ." Research Report COPR 72-4, University of Waterloo, 1972b.

Undergraduate Texts in Mathematics

Graduate Texts in Mathematics

Graduate Studies in Mathematics

Mathematics Encyclopedia

World

Index

Hellenica World - Scientific Library

Retrieved from "http://en.wikipedia.org/"
All text is available under the terms of the GNU Free Documentation License