\( \require{mhchem} \)
TURBOMOLE is an ab initio computational chemistry program that implements various quantum chemistry methods. It was initially developed by the group of Prof. Reinhart Ahlrichs at the University of Karlsruhe. In 2007, TURBOMOLE GmbH, founded by R. Ahlrichs, F. Furche, C. Hättig, W. Klopper, M. Sierka, and F. Weigend, took over the responsibility for the coordination of the scientific development of TURBOMOLE program, for which the company holds all copy and intellectual property rights. In 2018 David P. Tew joined the TURBOMOLE GmbH. Since 1987, this program is one of the useful tools as it involves in many fields of research including heterogeneous and homogeneous catalysis, organic and inorganic chemistry, spectroscopy as well as biochemistry. This can be illustrated by citation records of Ahlrich's 1989 publication which is more than 6700 times as of 18 July 2020.[1] In the year 2014,[2] the second Turbomole article has been published. The number of citations from both papers indicates that the Turbomole's user base is expanding.
General features
Turbomole was developed in 1987 and turned into a mature program system under the control of Reinhart Ahlrichs and his collaborators. Turbomole can perform a large-scale quantum chemical simulations of molecules, clusters, and later periodic solids. Gaussian basis sets are used in Turbomole. The functionality of the program concentrates extensively on the electronic structure methods with effective cost-performance characteristics such as density functional theory,[3] second–order Møller-Plesset[4][5] and coupled cluster theory. Aside from energies and structures, an assortment of optical, electrical, and magnetic properties are available from analytical energy derivative for electronic ground and excited states.[2] However, up to the year 2000, Turbomole was only limited to the calculation of molecules in gas phase, thus, COSMO has been implemented in the Turbomole in a cooperative initiative of BASF AG and Bayer AG.[6] Turbomole version 6.5 releasing in the year 2013, comes with post-Kohn-Sham calculations within the random-phase approximation. Turbomole also comes with another significant additions including nonadiabatic molecular dynamics, ultra-efficient higher order CC methods, new density functionals and periodic calculations.[7] TmoleX is available as a graphical user interface for Turbomole allowing the user to perform the entire workflow of a quantum chemical investigation ranging from building of an initial structure to the interpretation of the results.[8]
Version history
The current version of Turbomole is V7.3 released in July 2018[7]
TURBOMOLE V4-9 (1998)
TURBOMOLE V5-1 (1999)
TURBOMOLE V5.2 (1999)
TURBOMOLE V5.3 (2000)
TURBOMOLE V5.5 (2002)
TURBOMOLE V5.6 (2002)
TURBOMOLE V5.7 (2004)
TURBOMOLE V5.8 (2005)
TURBOMOLE V5.9 (2006)
TURBOMOLE V5.9.1 (2007)
TURBOMOLE V5.1 (2008)
TURBOMOLE V6.0 (2009)
TURBOMOLE V6.1 (2009)
TURBOMOLE V6.2 (2010)
TURBOMOLE V6.3 (2011)
TURBOMOLE V6.3.1 (2011)
TURBOMOLE V6.4 (2012)
TURBOMOLE V6.5 (2013)
TURBOMOLE V6.6 (2014)
TURBOMOLE V7.0 (2015)
TURBOMOLE V7.1 (2016)
TURBOMOLE V7.2 (2017)
TURBOMOLE V7.3 (2018)
TURBOMOLE V7.4 (2019)
TURBOMOLE V7.5 (2020)
TURBOMOLE V7.5.1 (2021)
TURBOMOLE V7.6 (2022)
References
Ahlrichs, Reinhart; Bär, Michael; Häser, Marco; Hom, Hans; Kölmel, Christoph (1989). "Electronic structure calculations on workstation computers". Chemical Physics Letters. 162 (3): 165–169. Bibcode:1989CPL...162..165A. doi:10.1016/0009-2614(89)85118-8.
Furche, Filipp; Ahlrichs, Reinhart; Hättig, Christof; Klopper, Wim; Sierka, Marek; Weigend, Florian (2014). "Turbomole". WIREs Comput Mol Sci. 4 (2): 91–100. doi:10.1002/wcms.1162.
Ahlrichs, Reinhart; Arnim, Malte V. (1998). "Performance of parallel Turbomole for density functional calculations". Journal of Computational Chemistry. 19 (15): 1746–1757. doi:10.1002/(SICI)1096-987X(19981130)19:15<1746::AID-JCC7>3.0.CO;2-N.
Bachorz, Rafal A.; Bischoff, Florian A.; Glöb, Andreas; Hättig, Christof; Klopper, Wim; Tew, David P. (2011). "Software news and update: The MP2-F12 method in the Turbomole program package". Journal of Computational Chemistry. 32 (11): 2492–2513. doi:10.1002/jcc.21825. PMID 21590779.
Gerenkamp, Mareike; Grimme, Stefan (2004). "Spin-component scaled second-order Møller-Plesset perturbation theory for the calculation of molecular geometries and harmonic vibrational frequencies". Chemical Physics Letters. 392 (1–3): 229–235. Bibcode:2004CPL...392..229G. doi:10.1016/j.cplett.2004.05.063.
Schäfer, Ansgar; Klamt, Andreas; Sattel, Diana; Lohrenz, John C.W.; Eckert, Frank (2000). "COSMO implementation in Turbomole: Extension of an efficient quantum chemical code towards liquid systems". Physical Chemistry Chemical Physics. 2 (10): 2187–2193. Bibcode:2000PCCP....2.2187S. doi:10.1039/B000184H.
"Turbomole Release Note". Turbomole. Cosmologic. Retrieved 28 March 2017.
Steffen, Claudia; Thomas, Klaus; Huniar, Uwe; Hellweg, Arnim; Rubner, Oliver; Schroer, Alexander (2010). "Software news and update: TmoleX-A graphical user interface for Turbomole". Journal of Computational Chemistry. 31 (16): 2967–2970. doi:10.1002/jcc.21576. PMID 20928852. S2CID 10884174.
External links
TURBOMOLE official website
TURBOMOLE PowerPoint Presentation from unist.ac.kr
vte
Computational chemistry software
Cheminformatics
Free software
Avalon Cheminformatics Toolkit Bioclipse Blue Obelisk Chemistry Development Kit ECCE JOELib OELib Open Babel RDKit
Proprietary
Canvas Chemicalize Discovery Studio
Chemical kinetics
Free software
APBS Cantera KPP
Proprietary
Autochem Chemical WorkBench CHEMKIN COSILAB DelPhi Khimera
Molecular modelling
and
visualization
List of molecular graphics systems
Free software
Ascalaph Designer Avogadro BALL Biskit Gabedit Ghemical Jmol Molekel PyMOL QuteMol RasMol
Proprietary
Abalone ACD/ChemSketch Atomistix ToolKit ChemDraw ChemWindow EzMol Gaussian Maestro MarvinSketch MarvinView MODELLER Molecular Operating Environment SAMSON Spartan UCSF Chimera VMD
Molecular docking
List of protein-ligand docking software
Free software
AutoDock AutoDock Vina FlexAID rDock
Proprietary
Glide LeDock Molecular Operating Environment
Molecular dynamics
Free software
CP2K GROMACS LAMMPS OpenMM PLUMED
Proprietary
Abalone AMBER CHARMM CPMD Desmond GROMOS NAMD
Quantum chemistry
List of quantum chemistry and solid-state physics software
Free software
ABINIT ACES (CFOUR) AIMAll BigDFT COLUMBUS CONQUEST CP2K Dalton DIRAC DP code FLEUR FreeON MADNESS MPQC NWChem Octopus OpenMolcas PARSEC PSI PyQuante PySCF Quantum ESPRESSO (PWscf) RMG SIESTA VB2000 YAMBO code
Proprietary
ADF AMPAC DMol3 CADPAC CASINO CASTEP CPMD CRUNCH CRYSTAL Firefly GAMESS (UK) GAMESS (US) Gaussian Jaguar MOLCAS MOLPRO MOPAC ONETEP OpenAtom ORCA PLATO PQS Q-Chem Quantemol Scigress Spartan TeraChem TURBOMOLE VASP WIEN2k XMVB
Skeletal structure drawing
Free software
JChemPaint Molsketch XDrawChem
Proprietary
ACD/ChemSketch BIOVIA Draw ChemDoodle ChemDraw ChemWindow JME Molecule Editor MarvinSketch
Others
Aqion Eulim EXC code GenX GSim Mercury CrystalExplorer ICM (ICM-Browser) Materials Studio Molden OpenChrom SASHIMI
Hellenica World - Scientific Library
Retrieved from "http://en.wikipedia.org/"
All text is available under the terms of the GNU Free Documentation License