ART

 

.

H Βιολογία Συστημάτων είναι ένας τομέας που αναπτύχθηκε πολύ πρόσφατα,αλλά βρίσκει όλο και περισσότερους υποστηρικτές. Η γενική ιδέα αφορά την ερμηνεία διάφορων βιολογικών συμβάντων χρησιμοποιώντας τη θεωρία των συστημάτων. Η έννοια του συστήματος χρησιμοποιείται εδώ και πάρα πολλά χρόνια από πολλές διαφορετικές επιστήμες με ισχυρό μαθηματικό υπόβαθρο. Έτσι λοιπόν, η εισαγωγή μιας τέτοιας έννοιας στη βιολογία έδωσε νέα ώθηση στην κατανόηση διαφόρων δομών και λειτουργιών.Από την μελέτη μεμονωμένων βιομορίων, η βιολογία συστημάτων έχει μετατοπίσει το ενδιαφέρον της στην ολοκληρωμένη μελέτη ομάδων βιομορίων τα συστατικά των οποίων αλληλεπιδρούν συνεργιστικά για την εκτέλεση και ολοκλήρωση βιολογικών λειτουργιών.

Εισαγωγή

Η κατανόηση των αποτελεσμάτων διαφόρων πειραμάτων ή μετρήσεων είναι συχνά δύσκολη ή αβέβαιη όταν δεν γνωρίζουμε πλήρως τον μηχανισμό που παράγει τα αποτελέσματα αυτά. Στην περίπτωση της βιολογίας, οι περισσότερες λειτουργίες ενός οργανισμού παραμένουν άγνωστες ακόμα και μετά από τόσα χρόνια παρατήρησης. Αντίθετα, προσπαθούμε να μαντέψουμε το «πώς» συνέβη κάτι με βάση διάσπαρτα ευρήματα, μετρήσεις μόνο συγκεκριμένων ποσοτήτων και εξωτερικά χαρακτηριστικά του φαινοτύπου του οργανισμού. Αυτή η προσπάθεια εμπεριέχει την κατά καιρούς εμφάνιση διαφόρων θεωριών, οι οποίες βασίζονται σε υπάρχοντα στοιχεία, αλλά με περαιτέρω έρευνα αποδεικνύονται λανθασμένες ή περιορίζεται η γενικότητά τους.

Σε αυτήν την προσπάθεια λοιπόν της εύρεσης των αιτίων με βάση τα αποτελέσματα, έρχεται να συνδράμει και η βιολογία συστημάτων.

Η βιολογία συστημάτων έχει το χαρακτηριστικό της συνεργασίας επιστημόνων από διάφορα πεδία, καθώς για τη δόμηση και επαλήθευση κάθε θεωρίας απαιτούνται γνώσεις από το πεδίο της βιολογία, τα μαθηματικά, τη φυσική και την επιστήμη της πληροφορικής, καθώς και άλλους επιμέρους τομείς.

Η μεγάλη διαφοροποίηση, διερευνώντας ένα βιολογικό συμβάν από τη σκοπιά της συστημικής βιολογίας, έγκειται στο ότι δεν έχουμε απλά μια συσχέτιση συμβάντων. Αντίθετα, με βάση τις πληροφορίες και τα δεδομένα που παράγονται, δομείται ολόκληρο το βιολογικό σύστημα. Στο σύστημα αυτό ελέγχεται η επικοινωνία μεταξύ των μερών καθώς και τα αποτελέσματα που έχει εν τέλει η ενεργοποίηση κάθε μέρους ξεχωριστά.

Εφαρμόζοντας μια σειρά μετρήσεων πρωτεϊνών, μπορούμε να διερευνήσουμε τα αποτελέσματα της εφαρμογής συγκεκριμένων ερεθισμάτων σε ένα κύτταρο. Έστω λοιπόν ότι γνωρίζουμε κάποιες πρωτεΐνες, που αν συνδεθούν με τις πρωτεΐνες της επιφάνειας του κυττάρου, ενεργοποιούν την έκφραση συγκεκριμένων γονιδίων. Αν μετρήσουμε τις πρωτεΐνες στο εσωτερικό του κυττάρου κατά τη διάρκεια της διαδικασίας αυτής, μπορεί να βρούμε αυξημένες συγκεκριμένες ενδιάμεσες πρωτεΐνες.

Διασταυρώνοντας τα δεδομένα από πολλά τέτοια πειράματα και συνθέτοντας ταυτόχρονα τις παραγόμενες πληροφορίες με αλγόριθμους, καταλήγουμε στην κατασκευή ενός δικτύου που περιγράφει τη διάδοση της πληροφορίας μέσα στο κύτταρο. Για το σκοπό αυτό απαιτείται μεγάλος όγκος δεδομένων.
Ιστορία

Η Συστημική βιολογία βρίσκει τις ρίζες της:

στη ποσοτική μοντελοποίηση της κινητικής του ενζύμου, ένας κλάδος που άνθισε μεταξύ του 1900 και του 1970,
στη μαθηματική μοντελοποίηση της αύξησης του πληθυσμού,
στις προσομοιώσεις που αναπτύχθηκαν για τη μελέτη της νευροφυσιολογίας, και τη θεωρία ελέγχου (control theory) και της ρομποτικής.

Ένας από τους θεωρητικούς που μπορεί να θεωρηθεί ως ένας από τους προδρόμους της βιολογίας συστημάτων είναι Λούντβιχ φον Μπερταλάνφυ(Ludwig von Bertalanffy) με τη γενική θεωρία των συστημάτων του . Μία από τις πρώτες αριθμητικές προσομοιώσεις στην κυτταρική βιολογία δημοσιεύθηκε το 1952 από τους Βρετανούς νευροφυσιολόγους και νομπελίστες Alan Lloyd Hodgkin και Andrew Fielding Huxley, οι οποίοι κατασκεύασαν ένα μαθηματικό μοντέλο που εξηγεί την πολλαπλασιαστική δυναμική δράσης κατά μήκος του άξονα σε ένα νευρικό κύτταρο.Tο μοντέλο τους περιγράφει πως μια κυτταρική λειτουργία αναδύεται από την αλληλεπίδραση μεταξύ δύο διαφορετικών μοριακών συστατικών, ενός καλίου και ενός νατρίου, και μπορεί ως εκ τούτου να θεωρηθεί ως η αρχή της υπολογιστικής βιολογίας συστημάτων. το 1960, ο Denis Noble ανέπτυξε το πρώτο μοντέλο ηλεκτρονικού υπολογιστή του καρδιακού βηματοδότη.

Η έναρξη της μελέτης της βιολογίας συστημάτων ως ξεχωριστή θεωρία, ξεκίνησε από τον θεωρητικό MIhajilo Mesarovic το 1966 [1] στα πλαίσια ενός διεθνούς συμποσίου στο Institute of Technology στο Κλίβελαντ του Οχάιο, με τίτλο «Θεωρία Συστημάτων και Βιολογία».[2].

Τα 1960 και 1970 είδε την ανάπτυξη διαφόρων προσεγγίσεων για τη μελέτη πολύπλοκων μοριακών συστημάτων, όπως την ανάλυση μεταβολικού ελέγχου και τη θεωρία βιοχημικών συστημάτων. Οι επιτυχίες της μοριακής βιολογίας σε όλη τη δεκαετία του 1980, σε συνδυασμό με το σκεπτικισμό έναντι της θεωρητικής βιολογίας,που ως τότε είχε υποσχεθεί περισσότερα από ό,τι επιτεύχθησαν, ήταν η αιτία της ποσοτικής μοντελοποίησης βιολογικών διεργασιών για να γίνει ένας κάπως ήσσονος σημασίας τομέας.

Ωστόσο, η γέννηση της λειτουργικής γονιδιωματικής στη δεκαετία του 1990 σήμαινε ότι μεγάλες ποσότητες δεδομένων υψηλής ποιότητας έγιναν διαθέσιμα, ενώ η υπολογιστική ισχύς εξερράγει, καθιστώντας δυνατό πιο ρεαλιστικά μοντέλα. Το 1992, και στη συνέχεια, το 1994, σειρές άρθρων σχετικά με τα συστήματα ιατρικής, γενετικής και τα συστήματα βιολογικής μηχανικής από τον BJ Zeng δημοσιεύθηκαν στην Κίνα, όπου έδωσε μια διάλεξη για τη θεωρία και ερευνητική προσέγγιση των συστημάτων στην Πρώτη Διεθνή Διάσκεψη για διαγονιδιακά ζώα, το Πεκίνο, το 1996. Το 1997, η ομάδα του Masaru Tomita δημοσίευσε το πρώτο ποσοτικό μοντέλο του μεταβολισμού ενός (υποθετικού) κυττάρου.

Γύρω στο 2000, και μετά από την ίδρυση των Ινστιτούτων της Συστημικής Βιολογίας στο Σιάτλ και το Τόκιο, η συστημική βιολογία εμφανίστηκε ως μια κίνηση από μόνη της, ωθούμενη από την ολοκλήρωση των διαφόρων έργων-μελετών γονιδιώματος, η μεγάλη αύξηση των δεδομένων από τις omics (π.χ., γονιδιωματική και πρωτεομική) και τα συνοδευτικά σε πειράματα υψηλής απόδοσης και της βιοπληροφορικής.

Το 2002, το Εθνικό Ίδρυμα Επιστημών (NSF) προέβαλε μια μεγάλη πρόκληση για τα συστήματα βιολογίας στον 21ο αιώνα για να κτίσουν ένα μαθηματικό μοντέλο ολόκληρου του κυττάρου. Το 2003, οι εργασίες στο Ινστιτούτο Τεχνολογίας της Μασαχουσέτης άρχισαν με τη CytoSolve, μια μέθοδο που εισήχθηκε για να διαμορφώσει το σύνολο των κυττάρων με δυναμική ενσωμάτωση πολλαπλών μοντέλων μοριακού μονοπατιού. Aπό τότε, έχουν διάφορα ερευνητικά ινστιτούτα, αφιερωμένά στη βιολογία συστημάτων.
Κλάδοι που συνεργάζονται στη Βιολογία Συστημάτων

Σύμφωνα με την ερμηνεία της Βιολογίας Συστημάτων η ικανότητα απόκτησης, ενσωμάτωσης και ανάλυσης σύνθετου συνόλου δεδομένων από πολλαπλές πειραματικές πηγές χρησιμοποιώντας διεπιστημονικά εργαλεία,μερικές τυπικές τεχνικές πλατφόρμες είναι:

Φαινομική

Διαφοροποίηση φαινοτύπου του οργανισμού καθώς αλλάζει κατά τη διάρκεια της ζωής του.

Γενομική

Δεοξυριβονουκλεϊκό οξύ (DNA) του οργανισμού, συμπεριλαμβανομένου ενδο-οργανισμικά κύτταρο-ειδικά παραλλαγών.

Επιγενετική

Μελέτη των αναστρέψιμων κληρονομήσιμων αλλαγών στη λειτουργία των γονιδίων, που εμφανίζονται χωρίς κάποια αλλαγή στην αλληλουχία του πυρηνικού DNA.

Μεταγραφομική

Ανάλυση γονιδιακής έκφρασης ολόκληρων κυττάρων ή ιστών με DNA μικροσυστοιχίες ή σειρά αναλύσεων γονιδιακής έκφρασης.

Πρωτεομική

Είναι η μεγάλης κλίμακας μελέτη των πρωτεϊνών, και ιδιαίτερα των δομών και λειτουργιών τους.

Μεταβολομική

Η επιστημονική μελέτη των χημικών διαδικασιών που αφορούν τους μεταβολίτες.

Συστημική βιολογία καρκίνου: Είναι μία σημαντική εφαρμογή στη προσέγγιση τηςΒιολογίας Συστημάτων, η οποία μπορεί να διακριθεί από το συγκεκριμένο στόχο της μελέτης. Λειτουργεί με συγκεκριμένα δεδομένα και εργαλεία. Ο μακροπρόθεσμος στόχος της βιολογίας συστημάτων του καρκίνου είναι η βελτίωση της διάγνωσης του καρκίνου, ταξινόμησης του και καλύτερη πρόβλεψη έκβασης προτεινόμενης θεραπείας, η οποία είναι η βάση για την εξατομικευμένη θεράπεια καρκίνου και εικονικό ασθενή καρκινου. Σημαντικές προσπάθειες έχουν γίνει στην υπολογιστική Βιολογία Συστημάτων του καρκίνου για τη δημιουργία ρεαλιστικών πολυ-κλιμάκων σε μοντέλα in-silico διαφόρων όγκων.

Οι έρευνες συχνά συνδυάζονται με τις μεθόδους διατάραξης μεγάλης κλίμακας, συμπεριλαμβανομένης βασισμένης σε γονίδιο και χημικές προσεγγίσεις με χρήση μικρών μορίων. Ρομπότ και αυτοματοποιημένοι αισθητήρες επιτρέπουν τέτοιας μεγάλης κλίμακας πειραμάτων και λήψη δεδομένων. Αυτές οι τεχνολογίες είναι ακόμη αναδυόμενες και αντιμετωπίζουν προβλήματα, όπως όσο μεγαλύτερη ποσότητα δεδομένων τόσο χαμηλότερη η ποιότητα αυτών.

Η προσέγγιση της Βιολογίας Συστημάτων συχνά περιλαμβάνει την ανάπτυξη μηχανιστικών μοντέλων, όπως η ανακατασκευή δυναμικών συστημάτων από τις ποσοτικές ιδιότητες των δομικά στοιχείων τους. Για παράδειγμα, ένα κυψελοειδές δίκτυο μπορεί να μοντελοποιηθεί μαθηματικά με τη χρήση μεθόδων που προέρχονται από χημική κινητική και θεωρία του ελέγχου. Λόγω του μεγάλου αριθμού παραμέτρων, οι μεταβλητές και οι περιορισμοί σε κυψελοειδή δίκτυα, αριθμητικές και υπολογιστικές τεχνικές χρησιμοποιούνται συχνά.
Βιβλιογραφία

Mesarovic, Mihajlo D. (1968). Systems Theory and Biology. Berlin: Springer-Verlag.

Rosen Robert (1968). «A Means Toward a New Holism». Science 3836: 34-35. doi:10.1126/science.161.3836.34.

"Systems Biology: the 21st Century Science". Institute for Systems Biology. Retrieved15 June 2011.
Βιολογία συστημάτων και -ομικές τεχνολογίες.Μ.Μανιουδάκη-Χ.Μπαζάκος 2001
Sauer, Uwe; Heinemann, Matthias; Zamboni, Nicola (27 April 2007). "Genetics: Getting Closer to the Whole Picture". Science 316 (5824): 550–551.doi:10.1126/science.1142502. PMID 1746327
Noble, Denis (2006). The music of life: Biology beyond the genome. Oxford: Oxford University Press. p. 176. ISBN 978-0-19-929573-9.
Kholodenko, Boris N; Sauro, Herbert M (2005). Alberghina, Lilia; Westerhoff, Hans V, eds. "Systems Biology: Definitions and Perspectives". Topics in Current Genetics 13. Berlin: Springer-Verlag. pp. 357–451. doi:10.1007/b136809. ISBN 978-3-540-22968-1
Chiara Romualdi; Gerolamo Lanfranchi (2009). "Statistical Tools for Gene Expressio
von Bertalanffy, Ludwig (28 March 1976) [1968]. General System theory: Foundations, Development, Applications. George Braziller. p. 295. ISBN 978-0-8076-0453-3.
Hodgkin, Alan L; Huxley, Andrew F (28 August 1952). "A quantitative description of membrane current and its application to conduction and excitation in nerve". Journal of Physiology 117 (4): 500–544. PMC 1392413. PMID 12991237.
Le Novère, Nicolas (13 June 2007). "The long journey to a Systems Biology of neuronal function". BMC Systems Biology 1: 28. doi:10.1186/1752-0509-1-28. PMC 1904462.PMID 17567903.
Noble, Denis (5 November 1960). "Cardiac action and pacemaker potentials based on the Hodgkin-Huxley equations". Nature 188 (4749): 495–497.Bibcode:1960Natur.188..495N. doi:10.1038/188495b0. PMID 13729365.
Mesarovic, Mihajlo D. (1968). Systems Theory and Biology. Berlin: Springer-Verlag.
Rosen, Robert (5 July 1968). "A Means Toward a New Holism". Science 161 (3836):3435. Bibcode:1968Sci...161...34M. doi:10.1126/science.161.3836.34.JSTOR 1724368.

Εγκυκλοπαίδεια Βιολογίας

Κόσμος

Αλφαβητικός κατάλογος

Hellenica World - Scientific Library

Από τη ελληνική Βικιπαίδεια http://el.wikipedia.org . Όλα τα κείμενα είναι διαθέσιμα υπό την GNU Free Documentation License