ART

.

Until the time of the Alexandrian school of anatomy, anatomical inquiry was confined to the examination of the bodies of brute animals. We have, indeed, no testimony of the human body human race. To this happy circumstance Herophilus and Erasistratus are indebted for the distinction of being known to posterity as the first anatomists who dissected and described the parts of the human body.

Herophilus

Of Herophilus it is said that he had extensive anatomical knowledge, acquired by dissecting not only brutes but human bodies. Of these he probably dissected more than any of his predecessors or contemporaries. Devoted to the assiduous cultivation of anatomy, he appears, to have studied with particular attention those parts which were least understood. He recognized the nature of the pulmonary artery, which he denominates arterious vein; he knew the vessels of the mesentery, and showed that they did not go to the vena portae, but to certain glandular bodies; and he first applied the name of twelve-inch or duodenum (dodekadaktulos) to that part of the alimentary canal which is next to the stomach. Like Erasistratus, he appears to have studied carefully the configuration of the brain; and though, like him, he distinguishes the nerves into those of sensation and those of voluntary motion, he adds to them the ligaments and tendons. A tolerable description of the liver by this anatomist is preserved in the writings of Galen. He first applied the name of choroid or vascular membrane to that which is found in the cerebral ventricles; he knew the straight venous sinus which still bears his name; and to him the linear furrow at the bottom of the fourth ventricle is indebted for its name of calamus scriptorius.

The celebrity of these two great anatomists appears to have thrown into the shade for a long period the names of all other inquirers; for, among their numerous and rather celebrated successors in the Alexandrian school, it is impossible to recognize a name which is entitled to distinction in the history of anatomy. In a chasm so wide it is not uninteresting to find, in one who combined the characters of the greatest orator and philosopher of Rome, the most distinct traces of attention to anatomical knowledge. Cicero, in his treatise De Natura Deorum, in a short sketch of physiology, such as it was taught by Aristotle and his disciples, introduces various anatomical notices, from which the classical reader may form some idea of the state of anatomy at that time. The Roman orator appears to have formed a pretty distinct idea of the form very just ideas of his anatomical attainments. From these it appears that Celsus was well acquainted with the windpipe and lungs and the heart; with the difference between the windpipe and oesophagus (stomachus), which leads to the stomach (ventriculus); and with the shape, situation and relations of the diaphragm. He enumerates also the principal facts relating to the situation of the liver, the spleen, the kidneys and the stomach. He appears, however, to have been unaware of the distinction of duodenum or twelve-inch bowel, already admitted by Herophilus, and represents the stomach as directly connected by means of the pylorus with the jejunum or upper part of the small intestine.

The 7th and 8th books, which are devoted to the consideration of those diseases which are treated by manual operation, contain sundry anatomical notices necessary to explain the nature of the diseases or mode of treatment. Of these, indeed, the merit is unequal; and it is not wonderful that the ignorance of the day prevented Celsus from understanding rightly the mechanism of the pathology of hernia. He appears, however, to have formed a tolerably just idea of the mode of cutting into the urinary bladder; and even his obstetrical instructions show that his knowledge of the uterus, vagina and appendages was not contemptible. It is in osteology, however, that the information of Celsus is chiefly conspicuous. He enumerates the sutures and several of the holes of the cranium, and describes at great length the superior and inferior maxillary bones and the teeth. With a good deal of care he describes the vertebrae and the ribs, and gives very briefly the situation and shape of the scapula, humerus, radius and ulna, and even of the carpal and metacarpal bones, and then of the different bones of the pelvis and lower extremities. He had formed a just idea of the articular connections, and is desirous to impress the fact that none is formed without cartilage. From his mention of many minute holes (multa et tenuia foramina) in the recess of the nasal cavities, it is evident that he was acquainted with the perforated plate of the ethmoid bone; and from saying that the straight part of the auditory canal becomes flexuous and terminates in numerous minute cavities (multa et tenuia foramina diducitur), it is inferred by Portal that he knew the semicircular canals.

Though the writings of Celsus show that he cultivated anatomical knowledge, it does not appear that the science was much studied by the Romans; and there is reason to believe that, after the decay of the school of Alexandria, it languished in neglect and obscurity. It is at least certain that the appearance of Marinus during the reign of Nero is mentioned by authors as an era remarkable for anatomical inquiry, and that this person is distinguished by Galen as the restorer of a branch of knowledge which had been before him suffered to fall into undeserved neglect. From Galen also we learn that Marinus gave an accurate account of the muscles, that he studied particularly the glands, and that he discovered those of the mesentery. He fixed the number of nerves at seven; he observed the palatine nerves, which he rated as the fourth pair; and described as the fifth the auditory and facial, which he regards as one pair, and the hypoglossal as the sixth.

Rufus

Not long after Marinus appeared Rufus (or Ruffus) of Ephesus, a Greek physician, who in the reign of Trajan was much attached to physiology, and as a means of cultivating this science studied Comparative Anatomy and made sundry experiments on living animals. Of the anatomical writings of this author there remains only a list or catalogue of names of different regions and parts of the animal body. He appears, however, to have directed attention particularly to the tortuous course of the uterine vessels, and to have recognized even at this early period the Fallopian tube. He distinguishes the nerves into those of sensation and those of motion. He knew the recurrent nerve. His name is further associated with the ancient experiment of compressing in the situation of the carotid arteries the pneumogastric nerve, and thereby inducing insensibility and loss of voice.

Galen

Of all the authors of antiquity, however, none possesses so just a claim to the title of anatomist as Claudius Galenus, the celebrated physician of Pergamum, who was born about the 130th year of the Christian era, and lived under the reigns of Hadrian, the Antonines, Commodus and Severus. He was trained by his father Nicon (whose memory he embalms as an eminent mathematician, architect and astronomer) in all the learning of the day, and initiated particularly into the mysteries of the Aristotelian philosophy. In an order somewhat whimsical he afterwards studied philosophy successively in the schools of the Stoics, the Academics, the Peripatetics and the Epicureans. When he was seventeen years of age, his father, he informs us, was admonished by a dream to devote his son to the study of medicine; but it was fully two years after that Galen entered on this pursuit, under the auspices of an instructor whose name he has thought proper to conceal. Shortly after he betook himself to the study of anatomy under Satyrus, a pupil of Quintus, and of medicine under Stratonicus, a Hippocratic physician, and Aeschrion, an empiric. He had scarcely attained the age of twenty when he had occasion to deplore the loss of the first and most affectionate guide of his studies; and soon after he proceeded to Smyrna to obtain the anatomical instructions of Pelops, who, though mystified by some of the errors of Hippocrates, is commemorated by his pupil as a skilful anatomist. After this he appears to have visited various cities distinguished for philosophical or medical teachers; and, finally, to have gone to Alexandria with the view of cultivating more accurately and intimately the study of anatomy under Heraclianus. Here he remained till his twenty-eighth year, when he regarded himself as possessed of all the knowledge then attainable through the medium of teachers. He now returned to Pergamum to exercise the art which he had so anxiously studied, and received, in his twenty-ninth year, an unequivocal testimony of the confidence which his fellow-citizens reposed in his skill, by being intrusted with the treatment of the wounded gladiators; and in this capacity he is said to have treated wounds with success which were fatal under former treatment. A seditious tumult appears to have caused him to form the resolution of quitting Pergamum and proceeding to Rome at the age of thirty-two. Here, however, he remained only five years; and returning once more to Pergamum, after travelling for some time, finally settled in Rome as physician to the emperor Commodus. The anatomical writings ascribed to Galen, which are numerous, are to be viewed not merely as the result of personal research and information, but as the common depository of the anatomical knowledge of the day, and as combining all that he had learnt from the several teachers under whom he successively studied with whatever personal investigation enabled him to acquire. It is on this account not always easy to distinguish what Galen had himself ascertained by personal research from that which was known by other anatomists. This, however, though of moment to the history of Galen as an anatomist, is of little consequence to the science itself; and from the anatomical remains of this author a pretty just idea may be formed both of the progress and of the actual state of the science at that time.

The osteology of Galen is undoubtedly the most perfect of the departments of the anatomy of the ancients. He names and distinguishes the bones and sutures of the cranium nearly in the same manner as at present. Thus, he notices the quadrilateral shape of the parietal bones; he distinguishes the squamous, the styloid, the mastoid and the petrous portions of the temporal bones; and he remarks the peculiar situation and shape of the sphenoid bone. Of the ethmoid, which he omits at first, he afterwards speaks more at large in another treatise. The malar he notices under the name of zygomatic bone; and he describes at length the upper maxillary and nasal bones, and the connection of the former with the sphenoid. He gives the first clear account of the number and situation of the vertebrae, which he divides into cervical, dorsal and lumbar, and distinguishes from the sacrum and coccyx. Under the head Bones of the Thorax, he enumerates the sternum, the ribs (ai pleurai), and the dorsal vertebrae, the connection of which with the former he designates as a variety of diarthrosis. The description of the bones of the extremities and their articulations concludes the treatise.

Though in myology Galen appears to less advantage than in osteology, he nevertheless had carried this part of anatomical knowledge to greater perfection than any of his predecessors. He describes a frontal muscle, the six muscles of the eye and a seventh proper to animals; a muscle to each ala nasi, four muscles of the lips, the thin cutaneous muscle of the neck, which he first termed platysma myoides or muscular expansion, two muscles of the eyelids, and four pairs of muscles of the lower jaw--the temporal to raise, the masseter to draw to one side, and two depressors, corresponding to the digastric and internal pterygoid muscles. After speaking of the muscles which move the head and the scapula, he adverts to those by which the windpipe is opened and shut, and the intrinsic or proper muscles of the larynx and hyoid bone. Then follow those of the tongue, pharynx and neck, those of the upper extremities, the trunk and the lower extremities successively; and in the course of this description he swerves so little from the actual facts that most of the names by which he distinguishes the principal muscles have been retained by the best modern anatomists. It is chiefly in the minute account of these organs, and especially in reference to the minuter muscles, that he appears inferior to the moderns.

The angiological knowledge of Galen, though vitiated by the erroneous physiology of the times and ignorance of the separate uses of arteries and veins, exhibits, nevertheless, some accurate facts which show the diligence of the author in dissection. Though, in opposition to the opinions of Praxagoras and Erasistratus, he proved that the arteries in the living animal contain not air but blood, it does not appear to have occurred to him to determine in what direction the blood flows, or whether it was movable or stationary. Representing the left ventricle of the heart as the common origin of all the arteries, though he is misled by the pulmonary artery, he nevertheless traces the distribution of the branches of the aorta with some accuracy. The vena azygos also, and the jugular veins, have contributed to add to the confusion of his description, and to render his angiology the most imperfect of his works.

In neurology we find him to be the author of the dogma that the brain is the origin of the nerves of sensation, and the spinal cord of those of motion; and he distinguishes the former from the latter by their greater softness or less consistence. Though he admits only seven cerebral pairs, he has the merit of distinguishing and tracing the distribution of the greater part of both classes of nerves with great accuracy. His description of the brain is derived from dissection of the lower animals, and his distinctions of the several parts of the organ have been retained by modern anatomists. His mode of demonstrating this organ, which indeed is clearly described, consists of five different steps. In the first the bisecting membrane--i.e. the falx (menigx dichotomousa)--and the connecting blood-vessels are removed; and the dissector, commencing at the anterior extremity of the great fissure, separates the hemispheres gently as far as the torcular, and exposes a smooth surface (ten choran tulode pos ousan), the mesolobe of the moderns, or the middle band. In the second he exposes by successive sections the ventricles, the choroid plexus and the middle partition. The third exhibits the pineal body (soma konoeides) or conarium, concealed by a membrane with numerous veins, meaning that part of the plexus which is now known by the name of velum interpositum, and a complete view of the ventricles. The fourth unfolds the third ventricle (tis alle trite koilia), the communication between the two lateral ones, the arch-like body (soma psalidoeides) fornix, and the passage from the third to the fourth ventricle. In the fifth he gives an accurate description of the relations of the third and fourth ventricle, of the situation of the two pairs of eminences, nates (glouta) and testes (didumia or orcheis), the scolecoid or worm-like process, anterior and posterior, and lastly the linear furrow, called by Herophilus calamus scriptorius.

In the account of the thoracic organs equal accuracy may be recognized. He distinguishes the pleura by the name of inclosing membrane (umen upezokos, membrana succingens), and remarks its similitude in structure to that of the peritoneum, and the covering which it affords to all the organs. The pericardium also he describes as a membranous sac with a circular basis corresponding to the base of the heart and a conical apex; and after an account of the tunics of the arteries and veins, he speaks shortly of the lung, and more at length of the heart, which, however, he takes somepains to prove not to be muscular, because it is harder, its fibres are differently arranged, and its action is incessant, whereas that of muscle alternates with the state of rest; he gives a good account of the valves and of the vessels; and notices especially the bony ring formed in the heart of the horse, elephant and other large animals.

The description of the abdominal organs, and of the kidneys and urinary apparatus, is still more minute, and in general accurate. Our limits, however, do not permit us to give any abstract of them; and it is sufficient in general to say that Galen gives correct views of the arrangement of the peritoneum and omentum, and distinguishes accurately the several divisions of the alimentary canal and its component tissues. In the liver, which he allows to receive an envelope from the peritoneum, he admits, in imitation of Erasistratus, a proper substance or parenchyma, interposed between the vessels, and capable of removal by suitable dissection. His description of the organs of generation is rather brief, and is, like most of his anatomical sketches, too much blended with physiological dogmas.

This short sketch may communicate some idea of the condition of anatomical knowledge in the days of Galen, who indeed is justly entitled to the character of rectifying and digesting, if not of creating, the science of anatomy among the ancients. Though evidently confined, perhaps entirely by the circumstances of the times, to the dissection of brute animals, so indefatigable and judicious was he in the mode of acquiring knowledge, that many of his names and distinctions are still retained with advantage in the writings of the moderns. Galen was a practical anatomist, and not only describes the organs of the animal body from actual dissection, but gives ample instructions for the proper mode of exposition. His language is in general clear, his style as correct as in most of the authors of the same period, and his manner is animated. Few passages in early science are indeed so interesting as the description of the process for demonstrating the brain and other internal organs which is given by this patient and enthusiastic observer of nature. To some it may appear absurd to speak of anything like good anatomical description in an author who writes in the Greek language, or anything like an interesting and correct manner in a writer who flourished at a period when taste was depraved or extinct and literature corrupted--when the philosophy of Antoninus and the mild virtues of Aurelius could do little to soften the iron sway of Lucius Verus and Commodus; but the habit of faithful observation in Galen seems to have been so powerful that in the description of material objects, his genius invariably rises above the circumstances of his age. Though not so directly connected with this subject, it is nevertheless proper to mention that he appears to have been the first anatomist who can be said, on authentic grounds, to have attempted to discover the uses of organs by vivisection and experiments on living animals. In this manner he ascertained the position and demonstrated the action of the heart; and he mentions two instances in which, in consequence of disease or injury, he had an opportunity of observing the motions of this organ in the human body. In short, without eulogizing an ancient author at the expense of critical justice, or commending his anatomical descriptions as superior to those of the moderns, it must be admitted that the anatomical writings of the physician of Pergamum form a remarkable era in the history of the science; and that by diligence in dissection and accuracy in description he gave the science a degree of importance and stability which it has retained through a lapse of many centuries.

The death of Galen, which took place at Pergamum in the seventieth year of his age and the 200th of the Christian era, may be regarded as the downfall of anatomy in ancient times. After this period we recognize only two names of any celebrity in the history of the science--those of Soranus and Oribasius, with the more obscure ones of Meletius and Theophilus, the latter the chief of the imperial guard of Heraclius.

Soranus, who was an Ephesian, and flourished under the emperors Trajan and Hadrian, distinguished himself by his researches on the female organs of generation. He appears to have dissected the human subject; and this perhaps is one reason why his descriptions of these parts are more copious and more accurate than those of Galen, who derived his knowledge from the bodies of the lower animals. He denies the existence of the hymen, but describes accurately the clitoris. Soranus the anatomist must be distinguished from the physician of that name, who was also a native of Ephesus.

Oribasius

Oribasius, who was born at Pergamum, is said to have been at once the friend and physician of the emperor Julian, and to have contributed to his elevation to the imperial throne. For this he appears to have suffered the punishment of a temporary exile under Valens and Valentinian; but was soon recalled, and lived in great honour till the period of his death (387). By le Clerc, Oribasius is regarded as a compiler; and indeed his anatomical writings bear so close a correspondence with those of Galen that the character is not altogether groundless. In various points, nevertheless, he has rendered the Galenian anatomy more accurate; and he has distinguished himself by a good account of the salivary glands, which were overlooked by Galen.

To the same period generally is referred the Anatomical Introduction of an anonymous author, first published in 1618 by Lauremberg, and afterwards by C. Bernard. It is to be regarded as a compilation formed on the model of Galen and Oribasius. The same character is applicable to the treatises of Meletius and Theophilus.

The decline indicated by these languid efforts soon sank into a state of total inactivity; and the unsettled state of society during the latter ages of the Roman empire was extremely unfavourable to the successful cultivation of science. The sanguinary conflicts in which the southern countries of Europe were repeatedly engaged with their northern neighbours between the 2nd and 8th centuries tended gradually to estrange their minds from scientific pursuits; and the hordes of barbarians by which the Roman empire was latterly overrun, while they urged them to the necessity of making hostile resistance, and adopting means of self-defence, introduced such habits of ignorance and barbarism, that science was almost universally forgotten. While the art of healing was professed only by some few ecclesiastics or by itinerant practitioners, anatomy was utterly neglected; and no name of anatomical celebrity occurs to diversify the long and uninteresting period commonly distinguished as the dark ages.

See also: Ancient Anatomy

Ancient Greece

Science, Technology , Medicine , Warfare, , Biographies , Life , Cities/Places/Maps , Arts , Literature , Philosophy ,Olympics, Mythology , History , Images

Medieval Greece / Byzantine Empire

Science, Technology, Arts, , Warfare , Literature, Biographies, Icons, History

Modern Greece

Cities, Islands, Regions, Fauna/Flora ,Biographies , History , Warfare, Science/Technology, Literature, Music , Arts , Film/Actors , Sport , Fashion

---

Cyprus

Greek-Library - Scientific Library

Retrieved from "http://en.wikipedia.org/"
All text is available under the terms of the GNU Free Documentation License

Greece

World

Index

Hellenica World