Physics Gifts

- Art Gallery -

An S-type star (or just S star) is a cool giant with approximately equal quantities of carbon and oxygen in its atmosphere. The class was originally defined in 1922 by Paul Merrill for stars with unusual absorption lines and molecular bands now known to be due to s-process elements. The bands of zirconium monoxide (ZrO) are a defining feature of the S stars.

The carbon stars have more carbon than oxygen in their atmospheres. In most stars, such as class M giants, the atmosphere is richer in oxygen than carbon and they are referred to as oxygen-rich stars. S-type stars are intermediate between carbon stars and normal giants. They can be grouped into two classes: intrinsic S stars, which owe their spectra to convection of fusion products and s-process elements to the surface; and extrinsic S stars, which are formed through mass transfer in a binary system.

The intrinsic S-type stars are on the most luminous portion of the asymptotic giant branch, a stage of their lives lasting less than a million years. Many are long period variable stars. The extrinsic S stars are less luminous and longer-lived, often smaller-amplitude semiregular or irregular variables. S stars are relatively rare, with intrinsic S stars forming less than 10% of asymptotic giant branch stars of comparable luminosity, while extrinsic S stars form an even smaller proportion of all red giants.

Spectral features

Cool stars, particularly class M, show molecular bands, with titanium(II) oxide (TiO) especially strong. A small proportion of these cool stars also show correspondingly strong bands of zirconium oxide (ZrO). The existence of clearly detectable ZrO bands in visual spectra is the definition of an S-type star.[1]

The main ZrO series are:[1]

α series, in the blue at 464.06 nm, 462.61 nm, and 461.98 nm
β series, in the yellow at 555.17 nm and 571.81 nm
γ series, in the red at 647.4 nm, 634.5 nm, and 622.9 nm[2]

The original definition of an S star was that the ZrO bands should be easily detectable on low dispersion photographic spectral plates, but more modern spectra allow identification of many stars with much weaker ZrO. MS stars, intermediate with normal class M stars, have barely detectable ZrO but otherwise normal class M spectra. SC stars, intermediate with carbon stars, have weak or undetectable ZrO, but strong sodium D lines and detectable but weak C2 bands.[3]

S star spectra also show other differences to those of normal M class giants. The characteristic TiO bands of cool giants are weakened in most S stars, compared to M stars of similar temperature, and completely absent in some. Features related to s-process isotopes such as YO bands, SrI lines, BaII lines, and LaO bands, and also sodium D lines are all much stronger. However, VO bands are absent or very weak.[4] The existence of spectral lines from the period 5 element Technetium (Tc) is also expected as a result of the s-process neutron capture, but a substantial fraction of S stars show no sign of Tc. Stars with strong Tc lines are sometimes referred to as Technetium stars, and they can be of class M, S, C, or the intermediate MS and SC.[5]

Some S stars, especially Mira variables, show strong hydrogen emission lines. The Hβ emission is often unusually strong compared to other lines of the Balmer series in a normal M star, but this is due to the weakness of the TiO band that would otherwise dilute the Hβ emission.[1]
Classification schemes

The spectral class S was first defined in 1922 to represent a number of long-period variables (meaning Mira variables) and stars with similar peculiar spectra. Many of the absorption lines in the spectra were recognised as unusual, but their associated elements were not known. The absorption bands now recognised as due to ZrO are clearly listed as major features of the S-type spectra. At that time, class M was not divided into numeric sub-classes, but into Ma, Mb, Mc, and Md. The new class S was simply left as either S or Se depending on the existence of emission lines. It was considered that the Se stars were all LPVs and the S stars were non-variable,[6] but exceptions have since been found. For example, π1 Gruis is now known to be a semiregular variable.[7]

The classification of S stars has been revised several times since its first introduction, to reflect advances in the resolution of available spectra, the discovery of greater numbers of S-type stars, and better understanding of the relationships between the various cool luminous giant spectral types.
Comma notation

The formalisation of S star classification in 1954 introduced a two-dimensional scheme of the form SX,Y. For example, R Andromedae is listed as S6,6e.[1]

X is the temperature class. It is a digit between 1 (although the smallest type actually listed is S1.5) and 9, intended to represent a temperature scale corresponding approximately to the sequence of M1 to M9. The temperature class is actually calculated by estimating intensities for the ZrO and TiO bands, then summing the larger intensity with half the smaller intensity.[1]

Y is the abundance class. It is also a digit between 1 and 9, assigned by multiplying the ratio of ZrO and TiO bands by the temperature class. This calculation generally yields a number which can be rounded down to give the abundance class digit, but this is modified for higher values:[1]

6.0 – 7.5 maps to 6
7.6 – 9.9 maps to 7
10.0 – 50 maps to 8
> 50 maps to 9

In practice, spectral types for new stars would be assigned by referencing to the standard stars, since the intensity values are subjective and would be impossible to reproduce from spectra taken under different conditions.[1]

A number of drawbacks came to light as S stars were studied more closely and the mechanisms behind the spectra came to be understood. The strengths of the ZrO and TiO are influenced both by temperature and by actual abundances. The S stars represent a continuum from having oxygen slightly more abundant than carbon to carbon being slightly more abundant than oxygen. When carbon becomes more abundant than oxygen, the free oxygen is rapidly bound into CO and abundances of ZrO and TiO drop dramatically, making them a poor indicator in some stars. The abundance class also becomes unusable for stars with more carbon than oxygen in their atmospheres.[8]

This form of spectral type is a common type seen for S stars, possibly still the most common form.[9]
Elemental intensities

The first major revision of the classification for S stars completely abandons the single-digit abundance class in favour of explicit abundance intensities for Zr and Ti.[10] So R And is listed, at a normal maximum, with a spectral type of S5e Zr5 Ti2.[9]

In 1979 Ake defined an abundance index based on the ZrO, TiO, and YO band intensities. This single digit between 1 and 7 was intended to represent the transition from MS stars through increasing C/O ratios to SC stars. Spectral types were still listed with explicit Zr and Ti intensity values, and the abundance index was included separately in the list of standard stars.[8]
Abundance index criteria and estimated C/O ratio[8] Abundance index Criteria C/O ratio
1 TiO ≫ ZrO and YO
< 0 .90
2 TiO ≥ ZrO ≥ 2×YO
0 .90
3 2×YO ≥ ZrO ≥ TiO
0 .93
4 ZrO ≥ 2×YO > TiO
0 .95
5 ZrO ≥ 2×YO, TiO = 0
> 0 .95
6 ZrO weak, YO and TiO = 0
~ 1
7 CS and carbon stars
> 1
Slash notation

The abundance index was immediately adopted and extended to run from 1 to 10, differentiating abundances in SC stars. It was now quoted as part of the spectral type in preference to separate Zr and Ti abundances. To distinguish it from the earlier abandoned abundance class it was used with a slash character after the temperature class, so that the spectral class for R And became S5/4.5e.[3]

The new abundance index is not calculated directly, but is assigned from the relative strengths of a number of spectral features. It is designed to closely indicate the sequence of C/O ratios from below 0.95 to about 1.1. Primarily the relative strength of ZrO and TiO bands forms a sequence from MS stars to abundance index 1 through 6. Abundance indices 7 to 10 are the SC stars and ZrO is weak or absent so the relative strength of the sodium D lines and Cs bands is used. Abundance index 0 is not used, and abundance index 10 is equivalent to a carbon star Cx,2 so it is also never seen.[4]
Abundance index criteria and estimated C/O ratio[4] Abundance index Criteria C/O ratio
MS Strongest YO and ZrO bands just visible
1 TiO ≫ ZrO and YO
< 0 .95
2 TiO > ZrO
0 .95:
3 ZrO = TiO, YO strong
0 .96
4 ZrO > TiO
0 .97
5 ZrO ≫ TiO
0 .97
6 ZrO strong, TiO = 0
0 .98
7 (SC) ZrO weaker, D lines strong
0 .99
8 (SC) No ZrO or C2, D lines very strong
1 .00
9 (SC) C2 very weak, D lines very strong
1 .02
10 (SC) C2 weak, D lines strong
1 .1:

The derivation of the temperature class is also refined, to use line ratios in addition to the total ZrO and TiO strength. For MS stars and those with abundance index 1 or 2, the same TiO band strength criteria as for M stars can be applied. Ratios of different ZrO bands at 530.5 nm and 555.1 nm are useful with abundance indices 3 and 4, and the sudden appearance of LaO bands at cooler temperatures. The ratio of BaII and SrI lines is also useful at the same indices and for carbon-rich stars with abundance index 7 to 9. Where ZrO and TiO are weak or absent the ratio of the blended features at 645.6 nm and 645.0 nm can be used to assign the temperature class.[4]
Asterisk notation

With the different classification schemes and the difficulties of assigning a consistent class across the whole range of MS, S, and SC stars, other schemes are sometimes used. For example, one survey of new S/MS, carbon, and SC stars uses a two-dimensional scheme indicated by an asterisk, for example S5*3. The first digit is based on TiO strength to approximate the class M sequence, and the second is based solely on ZrO strength.[2]
Standard stars

This table shows the spectral types of a number of well-known S stars as they were classified at various times. Most of the stars are variable, usually of the Mira type. Where possible the table shows the type at maximum brightness, but several of the Ake types in particular are not at maximum brightness and so have a later type. ZrO and TiO band intensities are also shown if they are published (an x indicates that no bands were found). If the abundances are part of the formal spectral type then the abundance index is shown.
Comparison of spectral types under different classification schemes Star Keenan
(1954)[1] Keenan et al.
(1974)[11] Ake
(1979)[8] Keenan-Boeshaar
(1980)[4]
R Andromedae S6,6e: Zr4 Ti3 S4,6e S8e Zr6 4 S5/4.5e Zr5 Ti2
X Andromedae S3,9e Zr3 Ti0 S2,9e: S5.5e Zr4 5 S5/4.5e Zr2.5 Tix
RR Andromedae S7,2e: Zr2 Ti6.5 S6,2e: S6.5e Zr3 Ti6 2 S6/3.5e Zr4+ Ti4
W Aquilae S4,9: Zr4 Ti0 S3,9e: S6/6e Zr6 Ti0
BD Camelopardalis S5,3 Zr2.5 Ti4 S3.5 Zr2.5 Ti3 2 S3.5/2 Zr2+ Ti3
BH Crucis SC8,6:[12] SC4.5/8-e Zr0 Tix Na10:
Chi Cygni S7,1e: Zr0-2 Ti7 S7,2e S9.5 Zr3 Ti9 1 S6+/1e = Ms6+ Zr2 Ti6
R Cygni S3.5,9e: Zr3.5 Ti0 S3,9e S8e Zr7 Ti3: 4 S5/6e Zr4 Tix
R Geminorum S3,9e: Zr3 Ti0 S3,9e S8e Zr5 5 S4/6e Zr3.5 Tix
Formation

There are two distinct classes of S-type stars: intrinsic S stars; and extrinsic S stars. The presence of Technetium is used to distinguish the two classes, only being found in the intrinsic S-type stars.
Intrinsic S stars
Stellar properties as a 2 M☉ solar-metallicity red giant evolves along the TP-AGB to become an S star and then a carbon star[13]

Intrinsic S-type stars are thermal pulsing asymptotic giant branch (TP-AGB) stars. AGB stars have inert carbon-oxygen cores and undergo fusion both in an inner helium shell and an outer hydrogen shell. They are large cool M class giants. The thermal pulses, created by flashes from the helium shell, cause strong convection within the upper layers of the star. These pulses become stronger as the star evolves and in sufficiently massive stars the convection becomes deep enough to dredge up fusion products from the region between the two shells to the surface. These fusion products include carbon and s-process elements.[14] The s-process elements include zirconium (Zr), yttrium (Y), lanthanum (La), technetium (Tc), barium (Ba), and strontium (Sr), which form the characteristic S class spectrum with ZrO, YO, and LaO bands, as well as Tc, Sr, and Ba lines. The atmosphere of S stars has a carbon to oxygen ratio in the range 0.5 to < 1.[15] Carbon enrichment continues with subsequent thermal pulses until the carbon abundance exceeds the oxygen abundance, at which point the oxygen in the atmosphere is rapidly locked into CO and formation of the oxides diminishes. These stars show intermediate SC spectra and further carbon enrichment leads to a carbon star.[16]
Extrinsic S stars

The Technetium isotope produced by neutron capture in the s-process is 99Tc and it has a half life of around 200,000 years in a stellar atmosphere. Any of the isotope present when a star formed would have completely decayed by the time it became a giant, and any newly formed 99Tc dredged up in an AGB star would survive until the end of the AGB phase, making it difficult for a red giant to have other s-process elements in its atmosphere without technetium. S-type stars without technetium form by the transfer of technetium-rich matter, as well as other dredged-up elements, from an intrinsic S star in a binary system onto a smaller less-evolved companion. After a few hundred thousand years, the 99Tc will have decayed and a technetium-free star enriched with carbon and other s-process elements will remain. When this star is, or becomes, a G or K type red giant, it will be classified as a Barium star. When it evolves to temperatures cool enough for ZrO absorption bands to show in the spectrum, approximately M class, it will be classified as an S-type star. These stars are called extrinsic S stars.[16][17]
Distribution and numbers

Stars with a spectral class of S only form under a narrow range of conditions and they are uncommon. The distributions and properties of intrinsic and extrinsic S stars are different, reflecting their different modes of formation.

TP-AGB stars are difficult to identify reliably in large surveys, but counts of normal M-class luminous AGB stars and similar S-type and carbon stars have shown different distributions in the galaxy. S stars are distributed in a similar way to carbon stars, but there are only around a third as many as the carbon stars. Both types of carbon-rich star are very rare near to the galactic centre, but make up 10% – 20% of all the luminous AGB stars in the solar neighbourhood, so that S stars are around 5% of the AGB stars. The carbon-rich stars are also concentrated more closely in the galactic plane. S-type stars make up a disproportionate number of Mira variables, 7% in one survey compared to 3% of all AGB stars.[18]

Extrinsic S stars are not on the TP-AGB, but are red giant branch stars or early AGB stars. Their numbers and distribution are uncertain. They have been estimated to make up between 30% and 70% of all S-type stars, although only a tiny fraction of all red giant branch stars. They are less strongly concentrated in the galactic disc, indicating that they are from an older population of stars than the intrinsic group.[16]
Properties

Very few intrinsic S stars have had their mass directly measured using a binary orbit, although their masses have been estimated using Mira period-mass relations or pulsations properties. The observed masses were found to be around 1.5 – 5 M☉[16] until very recently when Gaia parallaxes helped discover intrinsic S stars with solar-like masses and metallicities.[15] Models of TP-AGB evolution show that the third dredge-up becomes larger as the shells move towards the surface, and that less massive stars experience fewer dredge-ups before leaving the AGB. Stars with masses of 1.5 – 2.0 M☉ will experience enough dredge-ups to become carbon stars, but they will be large events and the star will usually skip straight past the crucial C/O ratio near 1 without becoming an S-type star. More massive stars reach equal levels of carbon and oxygen gradually during several small dredge-ups. Stars more than about 4 M☉ experience hot bottom burning (the burning of carbon at the base of the convective envelope) which prevents them becoming carbon stars, but they may still become S-type stars before reverting to an oxygen-rich state.[19] Extrinsic S stars are always in binary systems and their calculated masses are around 1.6 – 2.0 M☉. This is consistent with RGB stars or early AGB stars.[17]

Intrinsic S stars have luminosities around 5,000 – 10,000 L☉,[20][21] although they are usually variable.[16] Their temperatures average about 2,300 K for the Mira S stars and 3,100 K for the non-Mira S stars, a few hundred K warmer than oxygen-rich AGB stars and a few hundred K cooler than carbon stars. Their radii average about 526 R☉ for the Miras and 270 R☉ for the non-miras, larger than oxygen-rich stars and smaller than carbon stars.[22] Extrinsic S stars have luminosities typically around 2,000 L☉, temperatures between 3,150 and 4,000 K, and radii less than 150 R☉. This means they lie below the red giant tip and will typically be RGB stars rather than AGB stars.[23]
Mass loss and dust

Extrinsic S stars lose considerable mass through their stellar winds, similar to oxygen-rich TP-AGB stars and carbon stars. Typically the rates are around 1/10,000,000th the mass of the sun per year, although in extreme cases such as W Aquilae they can be more than ten times higher.[20]

It is expected that the existence of dust drives the mass loss in cool stars, but it is unclear what type of dust can form in the atmosphere of an S star with most carbon and oxygen locked into CO gas. The stellar winds of S stars are comparable to oxygen-rich and carbon-rich stars with similar physical properties. There is about 300 times more gas than dust observed in the circumstellar material around S stars. It is believed to be made up of metallic iron, FeSi, silicon carbide, and forsterite. Without silicates and carbon, it is believed that nucleation is triggered by TiC, ZrC, and TiO2.[21]

Detached dust shells are seen around a number of carbon stars, but not S-type stars. Infrared excesses indicate that there is dust around most intrinsic S stars, but the outflow has not been sufficient and longlasting enough to form a visible detached shell. The shells are thought to form during a superwind phase very late in the AGB evolution.[20]
Examples

BD Camelopardalis is a naked-eye example of an extrinsic S star. It is a slow irregular variable in a symbiotic binary system with a hotter companion which may also be variable.[24]

The Mira variable Chi Cygni is an intrinsic S star. When near maximum light, it is the sky's brightest S-type star.[25] It has a variable late type spectrum about S6 to S10, with features of zirconium, titanium and vanadium oxides, sometimes bordering on the intermediate MS type.[4] A number of other prominent Mira variables such as R Andromedae and R Cygni are also S-type stars, as well as the peculiar semiregular variable π1 Gruis.[25]

The naked-eye star ο1 Ori is an intermediate MS star and small amplitude semiregular variable[7] with a DA3 white dwarf companion.[26] The spectral type has been given as S3.5/1-,[4] M3III(BaII),[27] or M3.2IIIaS.[7]
References

Keenan, Philip C. (1954). "Classification of the S-Type Stars". Astrophysical Journal. 120: 484. Bibcode:1954ApJ...120..484K. doi:10.1086/145937.
MacConnell, D. J. (1979). "Discoveries on Southern Red-Sensitive Objective-Prism Plates – Part Two – New Ms-Stars Carbon-Stars and Sc-Stars". Astronomy and Astrophysics Supplement. 38: 335. Bibcode:1979A&AS...38..335M.
Boeshaar, P. C.; Keenan, P. C. (1979). "The problem of spectral classification of stars in the sequence S-SC-C". Spectral Classification of the Future. Ricerche Astronomiche. 9. p. 39. Bibcode:1979RA......9...39B.
Keenan, P. C.; Boeshaar, P. C. (1980). "Spectral types of S and SC stars on the revised MK system". Astrophysical Journal Supplement Series. 43: 379. Bibcode:1980ApJS...43..379K. doi:10.1086/190673.
Brown, Jeffery A.; Smith, Verne V.; Lambert, David L.; Dutchover, Edward; Hinkle, Kenneth H.; Johnson, Hollis R. (1990). "S stars without technetium – the binary star connection". Astronomical Journal. 99: 1930. Bibcode:1990AJ.....99.1930B. doi:10.1086/115475.
Merrill, P. W. (1922). "Stellar spectra of class S". The Astrophysical Journal. 56: 457. Bibcode:1922ApJ....56..457M. doi:10.1086/142716.
Samus, N. N.; Durlevich, O. V.; et al. (2009). "VizieR Online Data Catalog: General Catalogue of Variable Stars (Samus+ 2007–2013)". VizieR On-line Data Catalog: B/GCVS. Originally Published in: 2009yCat....102025S. 1. Bibcode:2009yCat....102025S.
Ake, T. B. (1979). "A revised spectral classification system in the red for S stars". Astrophysical Journal. 234: 538. Bibcode:1979ApJ...234..538A. doi:10.1086/157527.
Skiff, B. A. (2014). "VizieR Online Data Catalog: Catalogue of Stellar Spectral Classifications (Skiff, 2009–2016)". VizieR On-line Data Catalog: B/Mk. Originally Published in: Lowell Observatory (October 2014). 1. Bibcode:2014yCat....1.2023S.
Keenan, P. C.; McNeil, R. C. (1977). "An atlas of spectra of the cooler stars : Types G, K, M, S and C". Obs. 97: 178. Bibcode:1977Obs....97..178K.
Keenan, Philip C.; Garrison, Robert F.; Deutsch, Armin J. (1974). "Revised Catalog of Spectra of Mira Variables of Types ME and Se". Astrophysical Journal Supplement. 28: 271. Bibcode:1974ApJS...28..271K. doi:10.1086/190318.
Keenan, Ph. C. (1973). "The Role of Classification of Slit Spectrograms (introductory Lecture)". Spectral Classification and Multicolour Photometry. IAU Symposium. 50. p. 3. Bibcode:1973IAUS...50....3K.
Weiss, A.; Ferguson, J. W. (2009). "New asymptotic giant branch models for a range of metallicities". Astronomy and Astrophysics. 508 (3): 1343.arXiv:0903.2155. Bibcode:2009A&A...508.1343W. doi:10.1051/0004-6361/200912043. S2CID 15194560.
Gallino, Roberto; Arlandini, Claudio; Busso, Maurizio; Lugaro, Maria; Travaglio, Claudia; Straniero, Oscar; Chieffi, Alessandro; Limongi, Marco (1998). "Evolution and Nucleosynthesis in Low-Mass Asymptotic Giant Branch Stars. II. Neutron Capture and the S-Process". The Astrophysical Journal. 497 (1): 388. Bibcode:1998ApJ...497..388G. doi:10.1086/305437.
Shetye, S.; Goriely, S.; Siess, L.; Van Eck, S.; Jorissen, A.; Van Winckel, H. (2019). "Observational evidence of third dredge-up occurrence in S-type stars with initial masses around 1 M☉". Astronomy and Astrophysics. 625: L1.arXiv:1904.04039. Bibcode:2019A&A...625L...1S. doi:10.1051/0004-6361/201935296.
Van Eck, S.; Jorissen, A. (1999). "The Henize sample of S stars. I. The technetium dichotomy". Astronomy and Astrophysics. 345: 127–136.arXiv:astro-ph/9903241. Bibcode:1999A&A...345..127V.
Jorissen, A.; Van Eck, S.; Mayor, M.; Udry, S. (1998). "Insights into the formation of barium and Tc-poor S stars from an extended sample of orbital elements". Astronomy and Astrophysics. 332: 877.arXiv:astro-ph/9801272. Bibcode:1998A&A...332..877J.
Hollis R. Johnson; Ben Zuckerman (22 June 1989). Evolution of Peculiar Red Giant Stars. IAU Colloquium. 106. Cambridge University Press. pp. 342–. ISBN 978-0-521-36617-5.
Groenewegen, M. A. T.; Van Den Hoek, L. B.; De Jong, T. (1995). "The evolution of galactic carbon stars". Astronomy and Astrophysics. 293: 381. Bibcode:1995A&A...293..381G.
Ramstedt, S.; Schöier, F. L.; Olofsson, H. (2009). "Circumstellar molecular line emission from S-type AGB stars: Mass-loss rates and SiO abundances". Astronomy and Astrophysics. 499 (2): 515.arXiv:0903.1672. Bibcode:2009A&A...499..515R. doi:10.1051/0004-6361/200911730. S2CID 17942939.
Ferrarotti, A. S.; Gail, H.-P. (2002). "Mineral formation in stellar winds". Astronomy and Astrophysics. 382: 256–281. Bibcode:2002A&A...382..256F. doi:10.1051/0004-6361:20011580.
Van Belle, G. T.; Dyck, H. M.; Thompson, R. R.; Benson, J. A.; Kannappan, S. J. (1997). "Angular Size Measurements of Carbon Miras and S-Type Stars". Astronomical Journal. 114: 2150. Bibcode:1997AJ....114.2150V. doi:10.1086/118635.
Van Eck, S.; Jorissen, A.; Udry, S.; Mayor, M.; Pernier, B. (1998). "The HIPPARCOS Hertzsprung-Russell diagram of S stars: Probing nucleosynthesis and dredge-up". Astronomy and Astrophysics. 329: 971.arXiv:astro-ph/9708006. Bibcode:1998A&A...329..971V.
Ake, Thomas B.; Johnson, Hollis R.; Perry, Benjamin F. (1988). "Companions to peculiar red giants: HR 363 and HR 1105". In ESA. 281: 245. Bibcode:1988ESASP.281a.245A.
Stephenson, C. B. (1984). "A General Catalogue of Galactic S-Stars – ED.2". Publications of the Warner and Swasey Observatory. 3: 1. Bibcode:1984PW&SO...3....1S.
Ake, Thomas B.; Johnson, Hollis R. (1988). "A white dwarf companion to the main-sequence star 4 Omicron(1) Orionis and the binary hypothesis for the origin of peculiar red giants". Astrophysical Journal. 327: 214. Bibcode:1988ApJ...327..214A. doi:10.1086/166183.

Sato, K.; Kuji, S. (1990). "MK classification and photometry of stars used for time and latitude observations at Mizusawa and Washington". Astronomy and Astrophysics Supplement Series. 85: 1069. Bibcode:1990A&AS...85.1069S.

vte

Stars
Formation

Accretion Molecular cloud Bok globule Young stellar object
Protostar Pre-main-sequence Herbig Ae/Be T Tauri FU Orionis Herbig–Haro object Hayashi track Henyey track

Evolution

Main sequence Red-giant branch Horizontal branch
Red clump Asymptotic giant branch
super-AGB Blue loop Protoplanetary nebula Planetary nebula PG1159 Dredge-up OH/IR Instability strip Luminous blue variable Blue straggler Stellar population Supernova Superluminous supernova / Hypernova

Spectral classification

Early Late Main sequence
O B A F G K M Brown dwarf WR OB Subdwarf
O B Subgiant Giant
Blue Red Yellow Bright giant Supergiant
Blue Red Yellow Hypergiant
Yellow Carbon
S CN CH White dwarf Chemically peculiar
Am Ap/Bp HgMn Helium-weak Barium Extreme helium Lambda Boötis Lead Technetium Be
Shell B[e]

Remnants

White dwarf
Helium planet Black dwarf Neutron
Radio-quiet Pulsar
Binary X-ray Magnetar Stellar black hole X-ray binary
Burster

Hypothetical

Blue dwarf Green Black dwarf Exotic
Boson Electroweak Strange Preon Planck Dark Dark-energy Quark Q Black Gravastar Frozen Quasi-star Thorne–Żytkow object Iron Blitzar

Stellar nucleosynthesis

Deuterium burning Lithium burning Proton–proton chain CNO cycle Helium flash Triple-alpha process Alpha process Carbon burning Neon burning Oxygen burning Silicon burning S-process R-process Fusor Nova
Symbiotic Remnant Luminous red nova

Structure

Core Convection zone
Microturbulence Oscillations Radiation zone Atmosphere
Photosphere Starspot Chromosphere Stellar corona Stellar wind
Bubble Bipolar outflow Accretion disk Asteroseismology
Helioseismology Eddington luminosity Kelvin–Helmholtz mechanism

Properties

Designation Dynamics Effective temperature Luminosity Kinematics Magnetic field Absolute magnitude Mass Metallicity Rotation Starlight Variable Photometric system Color index Hertzsprung–Russell diagram Color–color diagram

Star systems

Binary
Contact Common envelope Eclipsing Symbiotic Multiple Cluster
Open Globular Super Planetary system

Earth-centric
observations

Sun
Solar System Sunlight Pole star Circumpolar Constellation Asterism Magnitude
Apparent Extinction Photographic Radial velocity Proper motion Parallax Photometric-standard

Lists

Proper names
Arabic Chinese Extremes Most massive Highest temperature Lowest temperature Largest volume Smallest volume Brightest
Historical Most luminous Nearest
Nearest bright With exoplanets Brown dwarfs White dwarfs Milky Way novae Supernovae
Candidates Remnants Planetary nebulae Timeline of stellar astronomy

Related articles

Substellar object
Brown dwarf Sub-brown dwarf Planet Galactic year Galaxy Guest Gravity Intergalactic Planet-hosting stars Tidal disruption event

Physics Encyclopedia

World

Index

Hellenica World - Scientific Library

Retrieved from "http://en.wikipedia.org/"
All text is available under the terms of the GNU Free Documentation License