ART

In astrophysics and particle physics, self-interacting dark matter (SIDM) is an alternative class of dark matter particles which have strong interactions, in contrast to the standard cold dark matter model (CDM). SIDM was postulated in 2000[1] as a solution to the core-cusp[2][3][4] problem. In the simplest models of DM self-interactions, a Yukawa-type potential and a force carrier φ mediates between two dark matter particles.[5] On galactic scales, DM self-interaction leads to energy and momentum exchange between DM particles. Over cosmological time scales this results in isothermal cores in the central region of dark matter haloes.

If the self-interacting dark matter is in hydrostatic equilibrium, its pressure and density follow:

\( {\displaystyle \nabla P_{\chi }/\rho _{\chi }=\nabla \Phi _{\rm {tot}}=\nabla (\Phi _{\chi }+\Phi _{b})} \)

where \( {\displaystyle \Phi _{\chi }} \) and \( {\displaystyle \Phi _{b}} \) are the gravitational potential of the dark matter and a baryon respectively. The equation naturally correlates the dark matter distribution to that of the baryonic matter distribution. With this correlation, the self-interacting dark matter can explain phenomena such as the Tully-Fisher relation.

Self-interacting dark matter has also been postulated as an explanation for the DAMA annual modulation signal.[6][7][8]
See also

MACS J0025.4-1222, astronomical observations that constrain DM self-interaction
ESO 146-5, the core of Abell 3827 that was claimed as the first evidence of SIDM
Strongly interacting massive particle (SIMP), proposed to explain cosmic ray data
Lambda-CDM model

References

Spergel, David N.; Steinhardt, Paul J. (April 2000). "Observational Evidence for Self-Interacting Cold Dark Matter". Physical Review Letters. 84 (17): 3760–3763. doi:10.1103/PhysRevLett.84.3760. ISSN 0031-9007.
Moore, Ben (August 1994). "Evidence against dissipation-less dark matter from observations of galaxy haloes". Nature. 370 (6491): 629–631. doi:10.1038/370629a0. ISSN 0028-0836.
Oh, Se-Heon; de Blok, W. J. G.; Walter, Fabian; Brinks, Elias; Kennicutt, Robert C. (December 2008). "High-Resolution Dark Matter Density Profiles of THINGS Dwarf Galaxies: Correcting for Noncircular Motions". The Astronomical Journal. 136 (6): 2761–2781. doi:10.1088/0004-6256/136/6/2761. ISSN 0004-6256.
Oh, Se-Heon; Hunter, Deidre A.; Brinks, Elias; Elmegreen, Bruce G.; Schruba, Andreas; Walter, Fabian; Rupen, Michael P.; Young, Lisa M.; Simpson, Caroline E.; Johnson, Megan C.; Herrmann, Kimberly A. (June 2015). "High-resolution Mass Models of Dwarf Galaxies from LITTLE THINGS". The Astronomical Journal. 149 (6): 180. doi:10.1088/0004-6256/149/6/180. ISSN 0004-6256.
Loeb, Abraham; Weiner, Neal (April 2011). "Cores in Dwarf Galaxies from Dark Matter with a Yukawa Potential". Physical Review Letters. 106 (17): 171302. doi:10.1103/PhysRevLett.106.171302. ISSN 0031-9007.
Mitra, Saibal (15 June 2005). "Has DAMA detected self-interacting dark matter?". Physical Review D. 71 (12): 121302. arXiv:astro-ph/0409121. Bibcode:2005PhRvD..71l1302M. doi:10.1103/PhysRevD.71.121302.
Moskowitz, Clara (20 April 2015). "Dark Matter May Feel a "Dark Force" That the Rest of the Universe Does Not". Scientific American.

Richard Massey; et al. (June 2015). "The behaviour of dark matter associated with four bright cluster galaxies in the 10 kpc core of Abell 3827". Monthly Notices of the Royal Astronomical Society. 449 (4P): 3393–3406. arXiv:1504.03388. Bibcode:2015MNRAS.449.3393M. doi:10.1093/mnras/stv467. commentary The Possible First Signs of Self-interacting Dark Matter

Further reading

Bertone, Gianfranco (2010). Particle Dark Matter: Observations, Models and Searches. Cambridge University Press. p. 762. Bibcode:2010pdmo.book.....B. ISBN 978-0-521-76368-4.
Musser, George (May 2000). "What's the Matter?" . Scientific American. Bibcode:2000SciAm.282e..24M. doi:10.1038/scientificamerican0500-24.
Lawrence, Krauss (2000). Quintessence: The Search for Missing Mass in the Universe. Basic Books. p. 384. ISBN 978-0465037414.

vte

Dark matter
Forms of
dark matter

Baryonic dark matter Cold dark matter Hot dark matter Light dark matter Mixed dark matter Warm dark matter Self-interacting dark matter Scalar field dark matter Primordial black holes


Hypothetical particles

Axino Axion Dark photon Holeum LSP Minicharged particle Neutralino Sterile neutrino SIMP WIMP

Theories
and objects

Cuspy halo problem Dark fluid Dark galaxy Dark globular cluster Dark matter halo Dark radiation Dark star Dwarf galaxy problem Halo mass function Mass dimension one fermions Massive compact halo object Mirror matter Navarro–Frenk–White profile Scalar field dark matter

Search
experiments
Direct
detection

ADMX ANAIS ArDM CDEX CDMS CLEAN CoGeNT COSINE COUPP CRESST CUORE D3 DAMA/LIBRA DAMA/NaI DAMIC DarkSide DARWIN DEAP DM-Ice DMTPC DRIFT EDELWEISS EURECA KIMS LUX LZ MACRO MIMAC NAIAD NEWAGE NEWS-G PandaX PICASSO PICO ROSEBUD SABRE SIMPLE TREX-DM UKDMC WARP XENON XMASS ZEPLIN

Indirect
detection

AMS-02 ANTARES ATIC CALET CAST DAMPE Fermi HAWC HESS IceCube MAGIC MOA OGLE PAMELA VERITAS

Other projects

MultiDark PVLAS

Potential dark galaxies

HE0450-2958 HVC 127-41-330 Smith's Cloud VIRGOHI21

Related

Antimatter Dark energy Exotic matter Galaxy formation and evolution Illustris project Imaginary mass Negative mass UniverseMachine

Physics Encyclopedia

World

Index

Hellenica World - Scientific Library

Retrieved from "http://en.wikipedia.org/"
All text is available under the terms of the GNU Free Documentation License