Physics Gifts

- Art Gallery -

The oxygen-burning process is a set of nuclear fusion reactions that take place in massive stars that have used up the lighter elements in their cores. Oxygen-burning is preceded by the neon-burning process and succeeded by the silicon-burning process. As the neon-burning process ends, the core of the star contracts and heats until it reaches the ignition temperature for oxygen burning. Oxygen burning reactions are similar to those of carbon burning; however, they must occur at higher temperatures and densities due to the larger Coulomb barrier of oxygen. Oxygen in the core ignites in the temperature range of (1.5–2.6)×109 K[1] and in the density range of (2.6–6.7)×10^12 kg·m−3.[2] The principal reactions are given below,[3][4] where the branching ratios assume that the deuteron channel is open (at high temperatures):[3]

16 8O + 16 8O → 28 14Si + 4 2He + 9.593 MeV (34%)
→ 31 15P + 1 1H + 7.676 MeV (56%)
→ 31 16S + n + 1.459 MeV (5%)
→ 30 14Si + 2 1 1H + 0.381 MeV
→ 30 15P + 2 1D − 2.409 MeV (5%)
→ 32 16S + γ + 16.539 MeV
→ 24 12Mg + 2 4 2He − 0.393 MeV

Near 2×109 K, the oxygen-burning reaction rate is approximately 2.8×10−12(T9/2)33 ,[3][5] where T9 is the temperature in billion kelvins. Overall, the major products of the oxygen-burning process are [3] 28Si, 32,33,34S, 35,37Cl, 36,38Ar, 39,41K, and 40,42Ca. Of these, 28Si and 32S constitute 90% of the final composition.[3] The oxygen fuel within the core of the star is exhausted after 0.01–5 years, depending on the star's mass and other parameters.[1][3] The silicon-burning process, which follows, creates iron, but this iron cannot react further to create energy to support the star.

During the oxygen-burning process, proceeding outward, there is an oxygen-burning shell, followed by a neon shell, a carbon shell, a helium shell, and a hydrogen shell. The oxygen-burning process is the last nuclear reaction in the star's core which does not proceed via the alpha process.

Pre-oxygen burning

Although 16O is lighter than neon, neon burning occurs before oxygen burning, because 16O is a doubly-magic nucleus and hence extremely stable. Compared to oxygen, neon is much less stable. As a result, neon burning occurs at lower temperatures than 16O + 16O.[9] During neon burning, oxygen and magnesium accumulate in the core of the star. At the onset of oxygen burning, oxygen in the stellar core is plentiful due to the helium-burning process (4He(2α,γ)12C(α,γ)16O), carbon-burning process (12C(12C,α)20Ne, 12C(α,γ)16O), and neon-burning process (20Ne(γ,α)16O). The reaction 12C(α,γ)16O has a significant effect on the reaction rates during oxygen burning, as it produces large quantities of 16O.[3]
Convectively bounded flames and off-center oxygen ignition

For stars with masses greater than 10.3 solar masses, oxygen ignites in the core or not at all. Similarly, for stars with a mass of less than 9 solar masses (without accretion of additional mass) oxygen ignites in the core or not at all. However, in the 9–10.3 solar mass range, oxygen ignites off-center.

For stars in this mass range neon-burning occurs in a convective envelope rather than at the core of the star. For the particular example of a 9.5 solar mass star, the neon-burning process takes place in an envelope of approximately 0.252 solar masses (~1560 kilometers) off center. From the ignition flash, the neon convective zone extends further out to 1.1 solar masses with a peak power around 1036 W. After only a month, the power declines to about 1035 W and stays at this rate for about 10 years. After this phase, the neon in the shell is depleted, resulting in greater inward pressure on the star. This raises the shell's temperature to 1.65 billion kelvins. This results in a neon-burning, convectively-bound flame front that moves toward the core. The motion of the flame is what eventually leads to oxygen-burning. In approximately 3 years, the flame's temperature reaches about 1.83 billion kelvins, enabling the oxygen-burning process to commence. This occurs around 9.5 years before the iron core develops. Similarly to the beginning of neon-burning, off-center oxygen-burning commences with another flash. The convectively burning flame then results from both neon and oxygen burning as it advances towards the core, while the oxygen-burning shell continuously shrinks in mass.[8]
Neutrino losses

During the oxygen-burning process, energy loss due to neutrino emission becomes relevant. Due to the large energy loss, oxygen must burn at temperatures higher than a billion kelvins in order to maintain a radiation pressure strong enough to support the star against gravity. Further, two electron capture reactions[clarify] (which produce neutrinos) become significant when the matter density is high enough (ρ > 2×107 g/cm3). Due to these factors, the timescale of oxygen burning is much shorter for heavy, dense stars.[7]
Explosive oxygen burning

The oxygen-burning process can occur under hydrostatic and under explosive conditions. The products of explosive oxygen burning are similar to those in hydrostatic oxygen burning. However, stable oxygen burning is accompanied by a multitude of electron captures, while explosive oxygen burning is accompanied by a significantly greater presence of photodisintegration reactions. In the temperature range of (3–4)×109 K, photodisintegration and oxygen fusion occur with comparable reaction rates.[3]
Pair-instability supernovae
Main article: Pair-instability supernova

Very massive (140–260 solar masses) population III stars may become unstable during core oxygen burning due to pair production. This results in a thermonuclear explosion, which completely disrupts the star.[2][6]

El Eid, M. F., B. S. Meyer, and L.‐S. The. "Evolution of Massive Stars Up to the End of Central Oxygen Burning." ApJ The Astrophysical Journal 611.1 (2004): 452–65. 21 July 2004. Web. 8 Apr. 2016.
Hirschi. "Evolution and nucleosynthesis of Very Massive Stars". arXiv:1409.7053v1 [astro-ph.SR] 24 Sep 2014.
Woosley, Heger, and Weaver. "The evolution of massive stars". Reviews of Modern Physics, Volume 74, October 2002.
Clayton, Donald. Principles of Stellar Evolution and Nucleosynthesis, (1983).
Caughlan and Fowler. "Thermonuclear reaction rates”. Atomic Data and Nuclear Data Tables, 40, 283–334 (1988).
Kasen, Woosley, and Heger. "Pair Instability Supernovae: Light Curves, Spectra, and Shock Breakout". The Astrophysical Journal 734:102, 2011 June 20.
Carroll, Bradley W., and Dale A. Ostlie. "An Introduction to Modern Astrophysics". San Francisco, Pearson Addison-Wesley, 2007.
S. E. Woosley and Alexander Heger. "The Remarkable Deaths of 9–10 Solar Mass Stars". arXiv:1505.06712v1. May 2015.

Longair, Malcolm. "High Energy Astrophysics", 3rd edition, (2011).

External links

Fusion of Carbon and Oxygen / The Astrophysics spectator, 2005
Arnett, W. D. Advanced evolution of massive stars. VI – Oxygen burning / Astrophysical Journal, vol. 194, Dec. 1, 1974, pt. 1, p. 373–383.


Nuclear processes
Radioactive decay

Alpha decay Beta decay Gamma radiation Cluster decay Double beta decay Double electron capture Internal conversion Isomeric transition Neutron emission Positron emission Proton emission Spontaneous fission

Stellar nucleosynthesis

Deuterium fusion Lithium burning pp-chain CNO cycle α process Triple-α C burning Ne burning O burning Si burning r-process s-process p-process rp-process


Photodisintegration Photofission


Electron capture Neutron capture Proton capture


(n-p) reaction




Accretion Molecular cloud Bok globule Young stellar object
Protostar Pre-main-sequence Herbig Ae/Be T Tauri FU Orionis Herbig–Haro object Hayashi track Henyey track


Main sequence Red-giant branch Horizontal branch
Red clump Asymptotic giant branch
super-AGB Blue loop Protoplanetary nebula Planetary nebula PG1159 Dredge-up OH/IR Instability strip Luminous blue variable Blue straggler Stellar population Supernova Superluminous supernova / Hypernova

Spectral classification

Early Late Main sequence
O B A F G K M Brown dwarf WR OB Subdwarf
O B Subgiant Giant
Blue Red Yellow Bright giant Supergiant
Blue Red Yellow Hypergiant
Yellow Carbon
S CN CH White dwarf Chemically peculiar
Am Ap/Bp HgMn Helium-weak Barium Extreme helium Lambda Boötis Lead Technetium Be
Shell B[e]


White dwarf
Helium planet Black dwarf Neutron
Radio-quiet Pulsar
Binary X-ray Magnetar Stellar black hole X-ray binary


Blue dwarf Green Black dwarf Exotic
Boson Electroweak Strange Preon Planck Dark Dark-energy Quark Q Black Gravastar Frozen Quasi-star Thorne–Żytkow object Iron Blitzar

Stellar nucleosynthesis

Deuterium burning Lithium burning Proton–proton chain CNO cycle Helium flash Triple-alpha process Alpha process Carbon burning Neon burning Oxygen burning Silicon burning S-process R-process Fusor Nova
Symbiotic Remnant Luminous red nova


Core Convection zone
Microturbulence Oscillations Radiation zone Atmosphere
Photosphere Starspot Chromosphere Stellar corona Stellar wind
Bubble Bipolar outflow Accretion disk Asteroseismology
Helioseismology Eddington luminosity Kelvin–Helmholtz mechanism


Designation Dynamics Effective temperature Luminosity Kinematics Magnetic field Absolute magnitude Mass Metallicity Rotation Starlight Variable Photometric system Color index Hertzsprung–Russell diagram Color–color diagram

Star systems

Contact Common envelope Eclipsing Symbiotic Multiple Cluster
Open Globular Super Planetary system


Solar System Sunlight Pole star Circumpolar Constellation Asterism Magnitude
Apparent Extinction Photographic Radial velocity Proper motion Parallax Photometric-standard


Proper names
Arabic Chinese Extremes Most massive Highest temperature Lowest temperature Largest volume Smallest volume Brightest
Historical Most luminous Nearest
Nearest bright With exoplanets Brown dwarfs White dwarfs Milky Way novae Supernovae
Candidates Remnants Planetary nebulae Timeline of stellar astronomy

Related articles

Substellar object
Brown dwarf Sub-brown dwarf Planet Galactic year Galaxy Guest Gravity Intergalactic Planet-hosting stars Tidal disruption event

Physics Encyclopedia



Hellenica World - Scientific Library

Retrieved from ""
All text is available under the terms of the GNU Free Documentation License