ART

Ganea's conjecture is a claim in algebraic topology, now disproved. It states that

\( {\displaystyle \operatorname {cat} (X\times S^{n})=\operatorname {cat} (X)+1} \)

for all n>0, where \( {\displaystyle \operatorname {cat} (X)} \) is the Lusternik–Schnirelmann category of a topological space X, and Sn is the n-dimensional sphere.

The inequality

\( {\displaystyle \operatorname {cat} (X\times Y)\leq \operatorname {cat} (X)+\operatorname {cat} (Y)} \)


holds for any pair of spaces, X and Y. Furthermore, \( {\displaystyle \operatorname {cat} (S^{n})=1} \), for any sphere \( S^{n} \), n>0. Thus, the conjecture amounts to \( {\displaystyle \operatorname {cat} (X\times S^{n})\geq \operatorname {cat} (X)+1} \).

The conjecture was formulated by Tudor Ganea in 1971. Many particular cases of this conjecture were proved, till finally Norio Iwase gave a counterexample in 1998. In a follow-up paper from 2002, Iwase gave an even stronger counterexample, with X a closed, smooth manifold. This counterexample also disproved a related conjecture, stating that

\( {\displaystyle \operatorname {cat} (M\setminus \{p\})=\operatorname {cat} (M)-1,} \)

for a closed manifold M and p a point in M.

This work raises the question: For which spaces X is the Ganea condition, \( {\displaystyle \operatorname {cat} (X\times S^{n})=\operatorname {cat} (X)+1} \), satisfied? It has been conjectured that these are precisely the spaces X for which \( {\displaystyle \operatorname {cat} (X)} \) equals a related invariant, \( {\displaystyle \operatorname {Qcat} (X).} \)

References

Ganea, Tudor (1971). "Some problems on numerical homotopy invariants". Symposium on Algebraic Topology (Battelle Seattle Res. Center, Seattle Wash., 1971). Lecture Notes in Mathematics. 249. Berlin: Springer. pp. 23–30. doi:10.1007/BFb0060892. MR 0339147.
Hess, Kathryn (1991). "A proof of Ganea's conjecture for rational spaces". Topology. 30 (2): 205–214. doi:10.1016/0040-9383(91)90006-P. MR 1098914.
Iwase, Norio (1998). "Ganea's conjecture on Lusternik–Schnirelmann category". Bulletin of the London Mathematical Society. 30 (6): 623–634. CiteSeerX 10.1.1.509.2343. doi:10.1112/S0024609398004548. MR 1642747.
Iwase, Norio (2002). "A∞-method in Lusternik–Schnirelmann category". Topology. 41 (4): 695–723. arXiv:math/0202119. doi:10.1016/S0040-9383(00)00045-8. MR 1905835.
Vandembroucq, Lucile (2002). "Fibrewise suspension and Lusternik–Schnirelmann category". Topology. 41 (6): 1239–1258. doi:10.1016/S0040-9383(02)00007-1. MR 1923222.

vte

Disproved conjectures

Borsuk's Chinese hypothesis Euler's sum of powers Ganea Hedetniemi's Hauptvermutung Hirsch Mertens Ono's inequality Pólya Ragsdale Schoen–Yau Seifert Tait's Von Neumann Weyl–Berry

Undergraduate Texts in Mathematics

Graduate Texts in Mathematics

Graduate Studies in Mathematics

Mathematics Encyclopedia

World

Index

Hellenica World - Scientific Library

Retrieved from "http://en.wikipedia.org/"
All text is available under the terms of the GNU Free Documentation License